
GalaChain SDK Docs

Gala Games

© 2024 Gala Games

Table of contents

41. GalaChain SDK

41.1 Features

41.2 Tutorials

41.3 Working with GalaChain

41.4 Reference documentation

41.5 Documentation in PDF format

52. GalaChain

52.1 What is GalaChain?

52.2 Why is GalaChain?

52.3 What kind of technology is GalaChain?

52.4 When is GalaChain?

52.5 Where do nodes come in?

52.6 How fast is GalaChain?

52.7 GalaChain for Publishers

62.8 GalaChain for Developers

73. Getting started

73.1 Option 1: Local Environment (Linux, MacOS, or Windows with WSL)

83.2 Option 2: Use Docker image (Linux, MacOS or Windows)

93.3 Option 3: Using Dev Containers (Linux or MacOS)

104. Troubleshooting

104.1 Docker Desktop on Windows

104.2 Docker

114.3 WSL

125. Chaincode development

125.1 Contract classes

135.2 Transaction decorators

135.3 Transaction context

145.4 Authentication and authorization

155.5 DTO types

155.6 Objects saved on chain

165.7 Error handling

175.8 State cache

175.9 Prevent duplicate calls

186. Chaincode Client

186.1 Hyperledger Fabric Client

Table of contents

- 2/37 - © 2024 Gala Games

196.2 REST API Client

206.3 Builder and actual client

206.4 Extending the client API

217. Testing your chaincode

217.1 Unit testing

237.2 Integration testing

278. Chaincode deployment

278.1 The process

288.2 Reference

309. Authorization and authentication

309.1 How it works

309.2 Signature based authorization

329.3 Organization based authorization

329.4 Next: Role Based Access Control (RBAC)

3310. From zero to deployment with GalaChain SDK

3310.1 1. Install the GalaChain CLI

3310.2 2. Initialize the project from template

3310.3 3. Update the contract (optional)

3410.4 4. Prepare and publish chaincode docker image

3410.5 5. Connect your chaincode with GalaChain network

3410.6 6. Deploy the chaincode

3410.7 7. Call REST API

3611. Using Windows with WSL

3611.1 How to use GalaChain with Windows Subsystem for Linux (WSL)

Table of contents

- 3/37 - © 2024 Gala Games

1. GalaChain SDK

Welcome to developing with GalaChain! GalaChain is a layer 1 blockchain designed to be the foundation of Web3 Gaming,

Entertainment and more.

1.1 Features

Utility libraries to allow seamless development of chaincodes

Local development environment with hot code reload and local block browser

Easy start with chaincode template

Integration with GalaChain

Read more about GalaChain.

1.2 Tutorials

From zero to deployment

Getting started guide

1.3 Working with GalaChain

Chaincode development

Chaincode testing

Chaincode deployment

Authorization

Chaincode client

1.4 Reference documentation

chain-api - Common types, DTOs (Data Transfer Objects), APIs, signatures, and utils for GalaChain

chain-client - GalaChain client library

chain-test - Unit testing and integration testing for GalaChain

chaincode framework - Framework for building chaincodes on GalaChain

1.5 Documentation in PDF format

PDF file

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1. GalaChain SDK

- 4/37 - © 2024 Gala Games

2. GalaChain

2.1 What is GalaChain?

GalaChain is a layer 1 blockchain designed to be the foundation of Web3 Gaming, Entertainment and more.

2.2 Why is GalaChain?

When Gala Games began integrating blockchain technology with games, we quickly realized that existing blockchain technology

was not built to support the kinds of functionality that players and developers desired in Web3 gaming. We set out on a quest to

build something different. As Gala has evolved, we recognize even more Web3 use cases that GalaChain is perfect for. We're

building a foundation for Web3 Gaming, Entertainment and beyond.

2.3 What kind of technology is GalaChain?

The core technology that GalaChain is built on is Hyperledger Fabric. We have built infrastructure and code to add capabilities to

easily onboard games and users. Now it's very straightforward to write contracts using typescript. We've also created a Token

contract that can be implemented in any channel. This immediately gives the channel access to native Token operations such as

transfer, mint, allowances, swapping, lending, and more.

2.4 When is GalaChain?

Now! GalaChain has already been integrated into live products including SpiderTanks, Music, PokerGO, and Champions Arena.

Many more are being onboarded in preparation for launch. Additionally, we're working incrementally toward broader public

access and participation.

2.5 Where do nodes come in?

We've got a lot of ideas about that! The first GalaChain workload that will be on nodes is likely to be one that helps perform

bridge transaction verifications. More info coming soon!

2.6 How fast is GalaChain?

Super-fast (or slow). One of the cool features of GalaChain is that each channel can be configured for different performance

options. Maybe your product wants to drop big chunks of data in each block and there's time between transactions, or you could

have small data, moving really fast. It's configurable! We typically don't talk about tx/s simply because it's relative to the use case

and so one data point may not be useful for everyone.

2.7 GalaChain for Publishers

Managed end-to-end blockchain solution

Managed infrastructure

Framework to lower chaincode development costs

Basic token features out of the box

Monetization with fees

Built in bridge

•

•

•

•

•

•

2. GalaChain

- 5/37 - © 2024 Gala Games

https://gala.games
https://www.hyperledger.org/projects/fabric

2.8 GalaChain for Developers

A framework and a set of tools for easy chaincode development

Open Source SDK, battle tested at Gala

Local development tools

Standardized and documented REST API

Testnet and Mainnet

CLI to manage the whole development cycle

•

•

•

•

•

•

2.8 GalaChain for Developers

- 6/37 - © 2024 Gala Games

3. Getting started

3.1 Option 1: Local Environment (Linux, MacOS, or Windows with WSL)

If you are using Windows with WSL don't forget to enable integration with WSL on Docker Desktop.

How to use Windows with WSL

3.1.1 Requirements

You need to have the following tools installed on your machine:

Node.js 18+

Docker and Docker Compose

jq and yq

3.1.2 1. Install our CLI

Check the CLI:

3.1.3 2. Initialize your project

It will create a sample project inside <project-name> directory.

Install all dependencies:

3.1.4 3. Start the network

The network will start in hot-reload/watch mode, so leave the prompt with logs running and execute the following commands in a

new prompt.

3.1.5 4. Run integration tests

Now you can run integration tests with:

3.1.6 5. Verify changes in block browser and GraphQL

Navigate to http://localhost:3010/blocks to see our block browser which allows you to see what's saved on your local GalaChain

network.

Navigate to http://localhost:3010/graphiql to interact with GraphQL and execute queries.

•

•

•

npm i -g @gala-chain/cli

galachain --help

galachain init <project-name>

npm i

npm run network:start

npm run test:e2e

3. Getting started

- 7/37 - © 2024 Gala Games

https://jqlang.github.io/jq/
https://github.com/mikefarah/yq
http://localhost:3010/blocks
http://localhost:3010/graphiql

3.1.7 6. Next steps

Iterate on your chaincode

Get familiar with GalaChain SDK

Deploy chaincode to gc-testnet

3.2 Option 2: Use Docker image (Linux, MacOS or Windows)

3.2.1 Requirements

Docker Desktop or Docker CLI.

[Optional] VS Code with Dev Containers extension.

3.2.2 1. Run the Docker image

Make sure the container is up and running. The Docker image initializes a new project with the name chaincode-template by

default.

3.2.3 2. Open the running container

2.1 Open the container with bash

2.2 Open the container with VSCode (Requires VSCode and Dev Containers Extension)

Open VSCode and press F1 to open the Command Palette and search for Dev Containers: Attach to Running Container

After attach the container you may have to open the project folder manually.

3.2.4 3. Start the network

Once the terminal is open, start the network with:

The network is going to start in dev mode and the prompt will be left showing the logs, so don't close the prompt and open new

ones to proceed with the following commands.

3.2.5 4. Run integration tests

Now you can run integration tests with:

3.2.6 5. Verify changes in block browser and GraphQL

Navigate to http://localhost:3010/blocks to see our block browser which allows you to see what's saved on your local GalaChain

network.

Navigate to http://localhost:3010/graphiql to interact with GraphQL and execute queries.

•

•

•

•

•

docker run --privileged -d -p 3010:3010 -it --name <container_name> ghcr.io/galachain/sdk:latest

docker exec -ti <container_name> /bin/bash

npm run network:start

npm run test:e2e

3.1.7 6. Next steps

- 8/37 - © 2024 Gala Games

https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
http://localhost:3010/blocks
http://localhost:3010/graphiql

3.3 Option 3: Using Dev Containers (Linux or MacOS)

3.3.1 Requirements

VSCode

Dev Containers Extension

Node.js

Docker

3.3.2 1. Install our CLI

Check the CLI:

3.3.3 2. Initialize your project

It will create a sample project inside <project-name> directory.

Open the directory on VSCode.

3.3.4 3. Open in a Dev Container

While in VSCode, press F1 to open the Command Palette and search for Dev Containers: Reopen in Container

You can also click on the Remote Indicator in the status bar to get a list of the most common commands.

•

•

•

•

npm i -g @gala-chain/cli

galachain --help

galachain init <project-name>

cd <project-name>
code .

3.3 Option 3: Using Dev Containers (Linux or MacOS)

- 9/37 - © 2024 Gala Games

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers

3.3.5 4. Install dependencies and start network

Open a new prompt when in a Dev Conatiner and run the commands:

The network will start in dev mode, so leave the prompt with logs running and execute the following commands in a new prompt.

3.3.6 5. Run integration tests

Now you can run integration tests with:

3.3.7 6. Verify changes in block browser and GraphQL

Navigate to http://localhost:3010/blocks to see our block browser which allows you to see what's saved on your local GalaChain

network.

Navigate to http://localhost:3010/graphiql to interact with GraphQL and execute queries.

4. Troubleshooting

4.1 Docker Desktop on Windows

If you are using Windows with WSL don't forget to enable integration with WSL on Docker Desktop.

Docker: image operating system "linux" cannot be used on this platform: operating system is not supported.

Some versions of the Docker Desktop for Windows have a bug that prevents the use of Linux images. If you are facing this issue,

you can use the WSL2 backend to run Docker. To do so, go to Docker Desktop > Settings > General and select WSL2 as the

default backend.

Docker: "no matching manifest for windows/amd64 in the manifest list entries".

To bypass this issue you can run the Docker daemon in experimental mode:

4.2 Docker

Docker: Error response from daemon: Conflict. The container name "/" is already in use by container "".

You have to remove (or rename) that container to be able to reuse that name.

npm install

npm run network:start

npm run test:e2e

Docker Desktop > Settins > Resources > WSL Integration

Docker Desktop > Settins > Docker Engine > Edit the Docker daemon file > Set the "experimental": true > Apply & Restart

3.3.5 4. Install dependencies and start network

- 10/37 - © 2024 Gala Games

http://localhost:3010/blocks
http://localhost:3010/graphiql

4.3 WSL

./fablo-target/fabric-config/configtx.yaml: no such file or directory

Make sure you are running it as a administrator of the cmd or powershell.

docker: Got permission denied

If you get a docker: Got permission denied error when running npm run network:start or npm run network:up, you may need to

enable the configuration: Docker Desktop > Settins > General > Expose daemon on tcp://localhost:2375 without TLS If it still doesn't

work, you can try use the WSL Ubuntu-20.04 distribution to run the network.

4.3 WSL

- 11/37 - © 2024 Gala Games

5. Chaincode development

The GalaChain SDK allows you to write Hyperledger Fabric chaincodes in TypeScript in a more convenient way, while adjusting

them to the GalaChain platform.

Key features: - Contract classes - Transaction decorators - Transaction context - Authentication and authorization - DTO types -

Objects saved on chain - Error handling - State cache - Recommended project structure - Tracing support

All samples in this document come from the GalaChain chaincode template. You can find the template in our source code in

chain-cli/chaincode-template directory, or initialize it with the galachain init command.

5.1 Contract classes

The GalaChain SDK allows developers to write chaincodes in an object-oriented way. It reuses the concept of contract classes

and contract methods from the Hyperledger Fabric Contract API. Typically, a contract class is a TypeScript class that extends

the GalaContract class from the @gala-chain/chaincode library. It is recommended to treat each contract class as a controller in

the MVC pattern (Model, View, Controller) and minimize the logic within it.

Sample contract class:

GalaContract is a base class for all contract classes. It provides several features: - It ensures that all contract methods have

access to the proper transaction context (GalaChainContext , see Transaction decorators). - It adds common methods for a

contract: GetContractVersion , GetContractAPI , GetObjectByKey , and GetObjectHistory . - It saves all writes from the GalaChain state

cache to the ledger at the end of a successful transaction (see State cache). - It enhances tracing (see Tracing support).

The constructor GalaContract class requires two parameters: name and version . name is a name of the contract, and version is a

version of the contract. Typically, you can read the version from the package.json file and version numbers conventionally follow

the npm / semver standards.

Each method of the contract class require two parameters: ctx and dto . ctx is a transaction context, an object that extends

Hyperledger Fabric Context class. Aside from the standard Fabric context, it provides some additional methods and properties

(see Transaction context).

The second parameter, dto , is an object that contains all parameters of the transaction (see DTO types).

Also, all contract methods are decorated with @Submit , @Evaluate , or @GalaTransaction decorators (see Transaction decorators).

These decorators are required for various reasons. For instance, they allow you to properly expose the contract methods in

GalaChain, deserialize and validate input parameters, normalize the response, handle authorization, etc.

import { Evaluate, GalaChainContext, GalaContract, Submit } from "@gala-chain/chaincode";
import { version } from "../../package.json";
import { AppleTreeDto, FetchTreesDto, PagedTreesDto, fetchTrees, plantTree } from "../apples";

export class AppleContract extends GalaContract {
constructor() {
super("AppleContract", version);

}

@Submit({
in: AppleTreeDto

})
public async PlantTree(ctx: GalaChainContext, dto: AppleTreeDto): Promise<void> {
await plantTree(ctx, dto);

}

@Evaluate({
in: FetchTreesDto,
out: PagedTreesDto

})
public async FetchTrees(ctx: GalaChainContext, dto: FetchTreesDto): Promise<PagedTreesDto> {
return await fetchTrees(ctx, dto);

}
}

5. Chaincode development

- 12/37 - © 2024 Gala Games

https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/
https://docs.npmjs.com/cli/v10/configuring-npm/package-json#version
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/fabric-contract-api.Context.html
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/fabric-contract-api.Context.html

5.2 Transaction decorators

Transaction decorators enhance the contract methods with various features: - They allow to properly expose the contract

methods API in GalaChain. - They deserialize and validate the DTO before method is called. - They normalize the chaincode

method output from any type to GalaChainResponse . - They handle authorization. - They can be used to ensure uniqueness of the

transaction in case of duplicate calls. - They can be used to define actions that should be executed before and after the

transaction.

GalaChain defines three decorator types: @Submit , @Evaluate , and @GalaTransaction .

@Submit decorator is used for contract methods that modify the ledger state.

@Evaluate decorator is used for contract methods that only read the ledger state.

@GalaTransaction decorator is used for both types of contract methods, but is more verbose. It is recommended to use @Submit

and @Evaluate decorators instead.

All decorators support the following parameters: - in - input DTO class that extends GalaChainDto class from @gala-chain/

chaincode library (default: ChainCallDTO class). This parameter is used to properly deserialize and validate the input parameters

of the transaction, and to properly expose the contract method API in GalaChain. It is highly recommended to provide a custom

dto class as a parameter, otherwise the validation won't work at all: There will be issues with deserialization of non-standard

input parameters like nested classes, BigDecimal values etc. - out - output type of the chaincode method (default: "null"). It

might be a string representing the type ("number" , "string" , "boolean" , "null" , "object"), or a custom class, or an object

{ "arrayOf": X } where X is a string representing the type or a custom class. This parameter is used to properly expose the

contract method API in GalaChain. - description - optional description of the contract method that is presented in GalaChain

contract method API definition. - allowedOrgs - optional parameter to define which organizations are allowed to call the contract

method. It is a string array with organization names. If not provided, all organizations are allowed to call the contract method. -

apiMethodName - optional name of the contract method that should be used in the GalaChain REST API. If not provided, the name

of the contract method is used. - sequence - optional parameter for advanced use cases. It means that the method call should

actually be defined as a sequence of calls. It is useful when a GalaChain REST API call should consist of multiple calls, and each

call should be executed in a separate transaction in a separate block. The sequence of calls is handled by GalaChain REST API. -

enforceUniqueKey - ensures that DTO contain a uniqueKey property, which is required to prevent duplicate calls (see Prevent

attacks or bad data state from duplicate calls). - before - optional parameter defining a function to be executed before the actual

transaction (but after the authorization). - after - optional parameter defining a function to be executed after the actual

transaction (but before the state cache is saved to the ledger).

Additionally, @GalaTransaction decorator supports type and verifySignature parameters. type can be GalaTransactionType.SUBMIT

or GalaTransactionType.EVALUATE and means whether the transaction is a submit or evaluate transaction. verifySignature can be

true or false and means whether the transaction should be verified against the signature. It is NOT recommended to use

verifySignature as false , because it disables authorization for the transaction.

@Submit decorator is a shortcut for @GalaTransaction({ type: GalaTransactionType.SUBMIT, verifySignature: true }) . @Evaluate

decorator is a shortcut for @GalaTransaction({ type: GalaTransactionType.EVALUATE, verifySignature: true }) .

5.3 Transaction context

GalaChainContext is an object that extends Hyperledger Fabric Context class. Asides from standard Fabric context, it provides

some additional methods and properties:

callingUser - returns standardized user id with prefix and actual name (note calling user is something different, than user in

Fabric CA; see Authentication and authorization).

callingUserEthAddress - returns eth address that is derived from calling user public key (see Authentication and authorization).

txUnixTime - returns unix time of the transaction.

span - returns tracing span of the transaction (see Tracing support).

GalaChainContext also changes the behavior of the stub property. In a standard Fabric context, the stub property returns a

ChaincodeStub object. In a GalaChain context, the stub property returns a proxy object that wraps ChaincodeStub in a way to

support caching (see State cache).

•

•

•

•

•

•

•

5.2 Transaction decorators

- 13/37 - © 2024 Gala Games

https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/fabric-contract-api.Context.html
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/fabric-contract-api.Context.html

Finally, it adds some customization to the logger property.

5.4 Authentication and authorization

A method call requires authorization when it is marked with @Submit or @Evaluate decorator, or with @GalaTransaction with

verifySignature: true .

Authorization is handled chaincode-side, on the basis of secp256k1 signature of the transaction. GalaChain recovers the public

key from the signature, and derives the corresponding eth address from the public key. Then, GalaChain checks whether the eth

address is registered in GalaChain as a user.

If the user is registered, ctx.callingUser and ctx.callingUserEthAddress properties are set in the transaction context.

ctx.callingUser is a standardized user id with prefix and actual name. It may be eth|<user-eth-address> or client|<user-alias> ,

depending on the way the user was registered (RegisterUser and RegisterEthUser respectively).

If the user is not registered, or the signature is missing or invalid, then the transaction is rejected.

Additional notes: * If a method is exposed but (1) does not require authorization (marked with @GalaTransaction with

verifySignature: false), and (2) its DTO does not have a signature, then ctx.callingUser contains the Fabric CA username

(client|<ca-username>) and executing ctx.callingUserEthAddress throws an exception. * If a method is exposed, does not require

authorization, and the DTO has a signature, then the regular authorization flow is performed.

5.4.1 Additional notes about signatures

A JSON payload to be signed is created from a DTO object without signature and trace properties, with its keys sorted

alphabetically, and no end of line character(s) at the end. (Further reading as to why the must be the case can be found in the

official Hyperledger Fabric documentation). Sample jq command to produce valid data to sign: jq -cSj "." dto-file.json .

Also, all BigNumber data should be provided as strings (not numbers or directly serialized BigNumber objects) with fixed decimal

point notation.

The EC secp256k1 signature should be created for keccak256 hash of the data. The recommended format of the signature is a

HEX encoded string, including r + s + v values. Signature in this format is supported by ethers library.

Sample signature:

GalaChain also supports DER encoded signatures for authorization, but since the DER signature does not contain v value (the

recovery part), you need to additionally provide signerPublicKey parameter to the transaction DTO.

Sample DER signature (first line), and the corresponding signerPublicKey (second line):

5.4.2 Restricting access by organization name

You can restrict access to a contract method by organization name using allowedOrgs parameter of the transaction decorators. It

is a string array with organization MSP names.

For example, if you want to allow only CuratorOrg and FarmerOrg to call a contract method, you can use:

GalaChain authorization will check whether the Fabric CA user which called the transaction belongs to one of the allowed

organizations. Thus, the check is not related with user profile saved on chain, but related with the CA user which called the

transaction.

b7244d62671319583ea8f30c8ef3b343cf28e7b7bd56e32b21a5920752dc95b94a9d202b2919581bcf776f0637462cb67170828ddbcc1ea63505f6a211f9ac5b1b

3045022100b7244d62671319583ea8f30c8ef3b343cf28e7b7bd56e32b21a5920752dc95b902204a9d202b2919581bcf776f0637462cb67170828ddbcc1ea63505f6a211f9ac5b
04fa7d9e30902207fd821a1518ce777e1935a45e52180d6a6339f37c3e3f759d1a64e33ed1e334070d37731f6ce3f4a5daa6ee4c9884f21860601fed892d40b2a9

@Submit({
in: AppleTreeDto,
allowedOrgs: ["CuratorOrg", "FarmerOrg"]

})

5.4 Authentication and authorization

- 14/37 - © 2024 Gala Games

https://hyperledger-fabric.readthedocs.io/en/release-2.4/chaincode4ade.html#json-determinism
https://docs.ethers.org/v5/
https://docs.ethers.org/v5/

Additionally, if you don't want to hardcode the organization names in the contract code, you can use AUTHORITY_ORG_NAME const

from @gala-chain/chaincode library. It takes the organization name from AUTHORITY_ORG_NAME environment variable (which defaults

to CuratorOrg).

5.5 DTO types

We consider DTO as an object that contains all parameters of the transaction (transaction input parameters). It is passed as a

second parameter to the contract method and deserialized with the use of transaction decorator in parameter.

Each DTO class should extend ChainCallDTO class from @gala-chain/chaincode library. It defines some additional fields that are

required for GalaChain to properly handle the transaction: - signature - optional signature of the transaction. It is required for

authorization (see Authentication and authorization). - signerPublicKey - optional signer public key of the transaction. It is

required for authorization when the transaction is signed with DER signature (see Authentication and authorization). - uniqueKey

- optional unique key of the transaction. It is required to prevent duplicate calls (see Prevent duplicate calls). - trace - optional

tracing span of the transaction (see Tracing support).

Sample DTO class:

GalaChain uses class-transformer and class-validator libraries for DTO serialization and validation. It also provides some

additional decorators for DTO properties, like @StringEnumProperty , or @BigNumberProperty . You should consult the documentation

of these libraries, especially for more complex use cases (including but not limited to): Nested objects, arrays of objects, etc.

(note decorators for trees property in the sample above).

Optionally, you can provide a @JSONSchema decorator from the class-validator-jsonschema library, either for whole DTO class, or

for each property. It is used to generate a JSON schema for the DTO, which is used in GalaChain REST API.

5.6 Objects saved on chain

GalaChain uses the same validation and serialization libraries for objects saved on chain as for DTOs (class-transformer and

class-validator). Accordingly, you can use the same decorators for objects saved on chain as for DTOs.

import { ChainCallDTO, StringEnumProperty } from "@gala-chain/api";
import { Type } from "class-transformer";
import { ArrayNotEmpty, ValidateNested } from "class-validator";

export enum Variety {
GALA = "GALA",
GOLDEN_DELICIOUS = "GOLDEN_DELICIOUS"

}

export class AppleTreeDto extends ChainCallDTO {
@StringEnumProperty(Variety)
public readonly variety: Variety;

public readonly index: number;
}

export class AppleTreesDto extends ChainCallDTO {
@ValidateNested({ each: true })
@Type(() => AppleTreeDto)
@ArrayNotEmpty()
public readonly trees: AppleTreeDto[];

}

import { BigNumberProperty, ChainKey, ChainObjectBase, StringEnumProperty } from "@gala-chain/api";
import BigNumber from "bignumber.js";
import { IsString } from "class-validator";
import { Variety } from "./types";

export class AppleTree extends ChainObject {
static INDEX_KEY = "GCAPPL";

@ChainKey({ position: 0 })
@IsString()
public readonly plantedBy: string;

@ChainKey({ position: 1 })
@StringEnumProperty(Variety)
public readonly variety: Variety;

@ChainKey({ position: 2 })
public readonly index: number;

5.5 DTO types

- 15/37 - © 2024 Gala Games

https://github.com/typestack/class-transformer
https://github.com/typestack/class-transformer
https://github.com/typestack/class-validator
https://github.com/typestack/class-validator
https://github.com/epiphone/class-validator-jsonschema
https://github.com/epiphone/class-validator-jsonschema
https://github.com/typestack/class-transformer
https://github.com/typestack/class-transformer
https://github.com/typestack/class-validator
https://github.com/typestack/class-validator

Aside from standard validation and serialization, GalaChain provides a @ChainKey decorator. It is used to define parts of the key of

the object saved on chain. For instance in the sample above, the key of the object saved on chain consists of INDEX_KEY ,

plantedBy , variety , and index properties. Since it is build from multiple properties, it is called a composite key.

Consider you have appleTree which is an instance of AppleTree class, and you want to save it on chain. You can use

putChainObject method from @gala-chain/chaincode library:

If you want to delete it from chain, you can use deleteChainObject method:

If you have a key of the object saved on chain (key), you can use getChainObject method to get the object from chain (AppleTree

class is required to properly deserialize the object):

You can get object history with getObjectHistory method:

And you can check if the object exists on chain with objectExists method:

Additionally, since GalaChain uses composite keys, you can get all objects with the same prefix using the

getObjectByPartialCompositeKey method. For instance, if you want to get all gala apple trees planted by a farmer, you can use:

There is also a relevant method that uses pagination (can be used only read-only transactions):

getObjectByPartialCompositeKeyWithPagination .

5.6.1 Ranged objects

GalaChain also supports ranged objects. Ranged objects do not use composite keys, so they can be used in Hyperledger Fabric

range queries.

Instead of ChainObject class, you should use RangedChainObject class. Then, you can use @ChainKey decorator to define the key

parts of the object saved on chain the same way as for ChainObject class. In order to put ranged object on chain, you should use

putRangedChainObject method.

5.7 Error handling

We recommend handling errors with exceptions. The GalaChain SDK provides a ChainError class that extends the Node.js Error

class, which additionally contains: * code property mapped to a corresponding HTTP code in GalaChain REST API. * key

property which is an autogenerated string key from the error class name (for easier debugging). * payload property which is an

optional object with additional information about the error.

The GalaChain SDK provides also several predefined error classes which contain proper code values: ValidationError ,

UnauthorizedError , PaymentRequiredError , ForbiddenError , NotFoundError , ConflictError , NoLongerAvailableError , DefaultError ,

RuntimeError , NotImplementedError . You may use them in your code or (preferably) create your own error classes that extend one

of the predefined error classes.

public readonly plantedAt: number;

@BigNumberProperty()
public applesPicked: BigNumber;

}

await putChainObject(ctx, appleTree);

await deleteChainObject(ctx, appleTree);

await getObjectByKey(ctx, AppleTree, key);

await getObjectHistory(ctx, key);

await objectExists(ctx, key);

await getObjectByPartialCompositeKey(ctx, AppleTree.INDEX_KEY, ["farmer1", Variety.GALA], AppleTree);

5.6.1 Ranged objects

- 16/37 - © 2024 Gala Games

When a contract method throws an error: * no state changes are saved to the ledger; * the error is logged; * the error is

automatically handled, so the response is always a GalaChainResponse object (in case of error the response object contains error

properites Status , Message , ErrorCode , ErrorKey , and ErrorPayload); * the transaction is saved on the ledger in transaction

history.

5.8 State cache

When you get state in Hyperledger Fabric, it always returns the latest value from the ledger. When you update the state in a

method, and get it again in the same method, it returns the same value as before the update. To avoid this behavior, the

GalaChain SDK has a built-in state cache.

This way, when you get state in a transaction method, and update it in the same method, the second get returns the updated

value.

The state cache also prevents inconsistent state in case of exceptions. Since all state changes are flushed to the ledger only at

the end of a successful transaction, if an exception is thrown, the state is not updated.

5.9 Prevent duplicate calls

Accidental (or maliciously intentional) duplicate calls of some transactions could potentially lead to bad data states, spend of

additional token quantities, application layer vulnerabilities, or other ill effects. To prevent this class of problems, DTOs can

contain a uniqueKey property. It is an optional string, provided client-side, that is used to prevent duplicate calls. If the same

uniqueKey is provided in two different transactions, the second transaction is rejected with UniqueTransactionConflictError error.

5.8 State cache

- 17/37 - © 2024 Gala Games

6. Chaincode Client

The @gala-chain/client package provides a client for interacting with the chaincode. Currently, it supports the following client

types: * client for interacting directly with the Hyperledger Fabric network, built on top of the fabric-network and fabric-ca-

client packages; * client for interacting with the chaincode via REST API that meets the GalaChain REST API specification, used

internally at GalaGames, and is also compatible with the slightly different REST API exposed by Fablo REST.

All client types share the same API, so it is easy to switch between them, depending on your needs.

Also, @gala-chain/client package is designed to be lightweight. This is why fabric-network and fabric-ca-client dependencies

are marked as optional peerDependencies and should be installed separately.

6.1 Hyperledger Fabric Client

In order to connect to the Hyperledger Fabric network, you need to provide the following configuration: 1. HFClientParams -

information containing basic information about network topology and credentials for connecting to the network; 2.

ContractConfig - information about the chaincode that will be used to interact with the network. 3. Optionally, a custom API

specification to make the client type-safe.

6.1.1 HFClientConfig

The HFClientConfig interface defines parameters that are required to connect to the Hyperledger Fabric network.

orgMsp - Hyperledger Fabric MSP name of the organization that the client will connect to;

userId - id of the user in Fabric CA that will be used to connect to the network;

userSecret - password/secret of the user in CA;

connectionProfilePath - path to the connection profile file that describes the network topology.

Both adminId and adminPass are required to authorize the client with the network. If they are not provided, the client will try to

get them from the environment variables ADMIN_ID and ADMIN_PASS respectively.

The connectionProfilePath should refer to a valid connection profile JSON file. For local development, you can use the connection

profile provided in the <network-root>/connection-profiles directory of the network generated by GalaChain CLI.

6.1.2 ContractConfig

The ContractConfig interface defines parameters that are required to interact with the chaincode.

channelName - name of the channel that the client will connect to;

chaincodeName - name of the chaincode that the client will use to interact with the network;

contractName - name of the contract that the client will use to interact with the chaincode.

```typescript
const params: HFClientConfig = {
  orgMsp: "PartnerOrg1",
  userId: "admin",
  userSecret: "adminpw",
  connectionProfilePath: path.resolve(networkRoot, "connection-profiles/cpp-partner.json")
};

• 

• 

• 

• 

const contract: ContractConfig = {
channelName: "product-channel",
chaincodeName: "basic-product",
contractName: "PublicKeyContract"

};

• 

• 

• 

6. Chaincode Client

- 18/37 - © 2024 Gala Games

https://www.npmjs.com/package/fabric-network
https://www.npmjs.com/package/fabric-network
https://www.npmjs.com/package/fabric-ca-client
https://www.npmjs.com/package/fabric-ca-client
https://www.npmjs.com/package/fabric-ca-client
https://www.npmjs.com/package/fabric-ca-client
https://github.com/fablo-io/fablo-rest


6.1.3 Creating the client

The client creation is a two-step process. First, you need to create a client builder instance using the forConnectionProfile

method. Then the forContract  method returns the actual client instance.

As a result, you get a ChainClient  instance that can be used to interact with the chaincode. It supports evaluateTransaction  and 

submitTransaction  methods that are used to invoke chaincode functions.

After you end interacting with the chaincode, you should disconnect the client:

Otherwise, the client will keep the GRPC connection to the network open.

6.2 REST API Client

The REST API client is used to interact with the chaincode via REST API, that matches the specification of managed

infrastructure of GalaChain.

In order to connect to the REST API, you need to provide the following configuration: 1. RestApiClientConfig  - information

containing basic information about path mapping and credentials for connecting to the network; 2. ContractConfig  - information

about the chaincode that will be used to interact with the network. 3. Optionally, a custom API specification to make the client

type-safe.

6.2.1 RestApiClientConfig

The RestApiClientConfig  interface defines parameters that are required to connect to the REST API.

orgMsp  - Hyperledger Fabric MSP name of the organization that the client will connect to;

apiUrl  - URL of the REST API;

configPath  - path to the configuration file that describes path mapping for channels, chaincodes, and contracts. Sample

configuration file can be found in the e2e  directory of the chaincode generated from template by GalaChain CLI.

6.2.2 ContractConfig

The ContractConfig  interface defines parameters that are required to interact with the chaincode.

channelName  - name of the channel that the client will connect to;

chaincodeName  - name of the chaincode that the client will use to interact with the network;

contractName  - name of the contract that the client will use to interact with the chaincode.

6.2.3 Creating the client

const client: ChainClient = gcclient
.forConnectionProfile(params)
.forContract(contract);

await client.disconnect();

const params: RestApiClientConfig = {
apiUrl: "http://localhost:3000/api",
configPath: path.resolve(__dirname, "api-config.json")

};

• 

• 

• 

const contract: ContractConfig = {
channelName: "product-channel",
chaincodeName: "basic-product",
contractName: "PublicKeyContract"

};

• 

• 

• 

const client: ChainClient = gcclient
.forApiConfig(params)
.forContract(contract);

6.1.3 Creating the client

- 19/37 - © 2024 Gala Games



The client creation is a two-step process. First, you need to create a client builder instance using the forConnectionProfile

method. Then the forContract  method returns the actual client instance.

As a result, you get a ChainClient  instance that can be used to interact with the chaincode. It supports evaluateTransaction  and 

submitTransaction  methods that are used to invoke chaincode functions.

After you end interacting with the chaincode, you should disconnect the client:

6.3 Builder and actual client

For all high-level operations, the client uses the Builder  pattern: 1. first, you create a builder instance using the 

forConnectionProfile  or forApiConfig  method; 2. then you configure the builder instance using the forContract  method.

Since all ChainClient  builders share the same interface, you can just parametrize the builder type and use the same code for all

client types, for instance:

6.4 Extending the client API

The @gala-chain/client  package provides a default API definition that is used to make the client type-safe. By default ChainClient

defines evaluateTransaction  and submitTransaction  methods that are used to interact with the chaincode. However, you can

provide your own API definition, if you want to extend the client API or use a different API. The API definition is a function that

accepts a ChainClient  instance and returns an object with methods that will be added to the client.

Now, when you enhance the client with your custom API, you can use not only default methods but also the ones that you

defined:

await client.disconnect();

const builder: ChainClientBuilder = process.env.USE_REST_API === "true"
? gcclient.forApiConfig(...)
: gcclient.forConnectionProfile(...);

const client: ChainClient = builder.forContract(...);

function customAPI(client: ChainClient) {
return {
async GetProfile(privateKey: string) {
const dto = new GetMyProfileDto().signed(privateKey, false);
const response = await client.evaluateTransaction("GetMyProfile", dto, UserProfile);
if (GalaChainResponse.isError(response)) {
throw new Error(`Cannot get profile: ${response.Message} (${response.ErrorKey})`);

} else {
return response.Data as UserProfile;

}
}

};
}

const client: ChainClient = ...;
client.evaluateTransaction(...); // available
client.submitTransaction(...); // available
client.GetProfile(...); // compilation error

const extendedClient = client.extend(customAPI);
client.evaluateTransaction(...); // available
client.submitTransaction(...); // available
client.GetProfile(...); // available

6.3 Builder and actual client

- 20/37 - © 2024 Gala Games



7. Testing your chaincode

The GalaChain SDK includes a comprehensive set of tools in the @gala-chain/test  package to facilitate the testing of your

chaincode. This package supports both unit testing for individual contracts and integration/end-to-end testing for running

networks.

7.1 Unit testing

The @gala-chain/test  package offers utilities designed for straightforward unit testing of your chaincode. The recommended

library for tests is Jest.

7.1.1 Writing unit tests

Consider a contract AppleContract  with the following methods:

Let's create tests for the following scenarios: 1. AppleContract  should allow to plant a tree. 2. AppleContract  should fail to plant a

tree if tree already exists. 3. AppleContract  should allow to pick an apple.

Note: AppleContract  with the referenced implementation and all relevant tests are available in chaincode template. You can

follow the instructions in Getting started to create a new chaincode project with AppleContract  included.

Test 1. AppleContract  should allow to plant a tree

This test ensures that the AppleContract  allows users to successfully plant a new apple tree. It validates the contract's behavior

during the tree planting process.

In this test, we set up the initial environment using the fixture  utility from @gala-chain/test . The fixture  contains: - contract  --

instance of the AppleContract  class, - ctx  -- test chaincode context, - writes  -- object capturing changes to the blockchain state.

Also, we define the AppleTreeDto  instance containing details about the apple tree to be planted, and the expectedTree  instance

containing the expected object to be written to the blockchain state.

The primary action involves invoking the PlantTree  method on the contract  instance.

Then, we assert that the response from planting the tree aligns with the expected success result with transactionSuccess

matcher from @gala-chain/test . Furthermore, we verify that the changes to the blockchain state ( writes ) match the expected

modifications. Since writes  is a map of key-value pairs, we use the writesMap  utility from @gala-chain/test  to get a key-value

representation of the expectedTree  instance.

export class AppleContract extends GalaContract {
public async PlantTree(ctx: GalaChainContext, dto: AppleTreeDto): Promise<void> { ... }
public async PickApple(ctx: GalaChainContext, dto: PickAppleDto): Promise<void> { ... }

}

import { fixture, transactionSuccess, writesMap } from "@gala-chain/test";
import { AppleTree, AppleTreeDto, Variety } from "../apples";
import { AppleContract } from "./AppleContract";

it("should allow to plant a tree", async () => {
// Given
const {contract, ctx, writes} = fixture(AppleContract);
const dto = new AppleTreeDto(Variety.GALA, 1);
const expectedTree = new AppleTree(ctx.callingUser, dto.variety, dto.index, ctx.txUnixTime);

// When
const response = await contract.PlantTree(ctx, dto);

// Then
expect(response).toEqual(transactionSuccess());
expect(writes).toEqual(writesMap(expectedTree));

});

7. Testing your chaincode

- 21/37 - © 2024 Gala Games

https://jestjs.io/


Test 2. AppleContract  should fail to plant a tree if tree already exists

In this test case, we aim to verify the behavior of the AppleContract when attempting to plant a new apple tree that already

exists. In our case a tree is considered to exist if it has the same variety  and index  as is planted by the same user.

In this test case, we also use the fixture  utility from @gala-chain/test  to set up the initial environment. However, we use the 

callingUser  method to specify the user who will invoke the contract method, and we use the savedState  method to specify the

initial state of the blockchain. Also, the saved AppleTree  instance is marked to be planted by the user who invokes the contract

method ( user.identityKey  is the same as ctx.callingUser  in this setup).

This way calling PlantTree  method with the same variety  and index  will result in an error.

During validation, we assert that the response from planting the tree contains the expected error message, and no changes to

the blockchain state ( writes ) are made. To assert the error we use the transactionErrorMessageContains  matcher from @gala-

chain/test . Other useful matchers include transactionError  (for providing an exact error object) and transactionErrorKey  (for

providing the error key).

Test 3. AppleContract  should allow to pick an apple

In this test case, we aim to verify the behavior of the AppleContract  when attempting to pick an apple from an existing apple tree.

In our case a tree has apples if a given time passes. That's why we start from a tree that was planted two years ago.

During validation, we assert that the response from picking an apple is successful, and the change to the blockchain state

( writes ) is overriding current apple tree with the updated picked apples count.

import { fixture, transactionErrorMessageContains } from "@gala-chain/test";
import { ChainUser } from "@gala-chain/client";
import { AppleTree, AppleTreeDto, Variety } from "../apples";
import { AppleContract } from "./AppleContract";

it("should fail to plant a tree if tree already exists", async () => {
// Given
const user = ChainUser.withRandomKeys();

const {contract, ctx, writes} = fixture(AppleContract)
.callingUser(user)
.savedState(new AppleTree(user.identityKey, Variety.GOLDEN_DELICIOUS, 1, 0));

// When
const response = await contract.PlantTree(ctx, new AppleTreeDto(Variety.GOLDEN_DELICIOUS, 1));

// Then
expect(response).toEqual(transactionErrorMessageContains("Tree already exists"));
expect(writes).toEqual({});

});

import { fixture, transactionSuccess, writesMap } from "@gala-chain/test";
import { plainToInstance } from "class-transformer";
import { AppleTree, PickAppleDto, Variety } from "../apples";
import { AppleContract } from "./AppleContract";

it("should allow to pick apples", async () => {
// Given
const twoYearsAgo = new Date(new Date().getTime() - 1000 * 60 * 60 * 24 * 365 * 2).getTime();
const existingTree = new AppleTree("client|some-user", Variety.GALA, 1, twoYearsAgo);
const {contract, ctx, writes} = fixture(AppleContract).savedState(existingTree);

const dto = new PickAppleDto(existingTree.plantedBy, existingTree.variety, existingTree.index);

// When
const response = await contract.PickApple(ctx, dto);

// Then
expect(response).toEqual(transactionSuccess());
expect(writes).toEqual(writesMap(plainToInstance(AppleTree, {
...existingTree,
applesPicked: existingTree.applesPicked.plus(1)

})));
});

7.1.1 Writing unit tests

- 22/37 - © 2024 Gala Games



7.1.2 Using fixture  for regular functions

fixture  can be used for regular functions as well, without the need to call contract methods directly. However, the ctx

parameter is tied to the contract, and you must provide any contract class, such as AppleContract  or any class that extends 

GalaContract  from the @gala-chain/chaincode  package.

Using fixture  for regular functions is useful when you want to test the behavior of the function without the need to call the

contract method. However, if you want to verify writes, you need to explicitly call contract.afterTransaction  or 

ctx.stub.flushWrites  method. This is required, because all writes actually are added to internal cache, and are executed after the

contract method is successfully executed.

7.1.3 Additional notes

Signatures

In most transactions, DTOs require a secp256k1 signature to verify the identity of the user invoking the contract method. When

using fixture , there's no need to provide a signature as it's handled automatically.

beforeTransaction  and afterTransaction

In the context of testing contract methods with fixture , you don't need to manually call contract.beforeTransaction  and 

contract.afterTransaction  methods; they are invoked automatically.

7.2 Integration testing

The @gala-chain/test  package, combined with the @gala-chain/client  package, provides utilities for integration testing your

chaincode. The primary objective of integration or end-to-end tests is to call transactions on the actual Hyperledger Fabric

network and verify the results.

The recommended library for tests is Jest.

import { ChainUser } from "@gala-chain/client";
import { fixture, writesMap } from "@gala-chain/test";
import { GalaContract } from "@gala-chain/chaincode";
import { AppleTreeDto, AppleTreesDto } from "./dtos";
import { Variety } from "./types";
import { AppleTree } from "./AppleTree";
import { plantTrees } from "./plantTrees";

class TestContract extends GalaContract {
constructor() {
super("TestContract", "0.0.1");

}
}

it("should allow to plant trees", async () => {
// Given
const user = ChainUser.withRandomKeys();

const {ctx, writes} = fixture(TestContract).callingUser(user);

const dto = new AppleTreesDto([
new AppleTreeDto(Variety.GALA, 1),
new AppleTreeDto(Variety.MCINTOSH, 2),

]);

const expectedTrees = dto.trees.map(t => new AppleTree(user.identityKey, t.variety, t.index, ctx.txUnixTime));

// When
const response = await plantTrees(ctx, dto);

// Then
expect(response).toEqual(expectedTrees);

await ctx.stub.flushWrites();
expect(writes).toEqual(writesMap(...expectedTrees));

});

7.1.2 Using fixture for regular functions

- 23/37 - © 2024 Gala Games

https://jestjs.io/


7.2.1 Writing integration tests

Assume you have a contract AppleContract  with the following methods:

Let's write tests for the following scenarios: 1. Plant a bunch of trees 2. Fetch GALA trees planted by a user 3. Fail to pick a

GOLDEN_DELICIOUS apple because tree is too young

Note: AppleContract  with the referenced implementation and all relevant tests (file: e2e/apples.spec.ts ) are available in

chaincode template.

Setup

Before writing integration tests, ensure you have a running GalaChain network. You can use the npm run network:start  command

provided by the chaincode template to start a local network in dev mode with hot-reload enabled.

Integration tests are executed against the running network, which is not recreated after each test. To make tests independent,

you may need to randomize test data or clean up the data on the chain after tests.

In our case for apples, we use random users defined at the test suite level to create different users for each run, ensuring test

suite independence. However, each test in the suite uses the same user and is not independent. Thus, we use scenario-like

testing in the apples test suite, and each test is dependent on the previous one.

Also, since we are using the running network, we need a client to interact with the network. It needs to be connected to the

network, anf it needs to be disconnected after the tests are finished.

Here is an example of the test setup:

Optional setup -- custom API

By default client  is not aware of your chaincode and types, providing only generic methods for submitting or evaluating

transactions:

They are generic, and you need to provide a method name, and optionally a DTO and response type to deserialize the response to

a proper type. But you can define a custom API, that will be aware of your chaincode and types.

export class AppleContract extends GalaContract {
public async PlantTrees(ctx: GalaChainContext, dto: AppleTreesDto): Promise<void> { ... }
public async FetchTrees(ctx: GalaChainContext, dto: FetchTreesDto): Promise<PagedTreesDto> { ... }
public async PickApple(ctx: GalaChainContext, dto: PickAppleDto): Promise<void> { ... }

}

import { AdminChainClients, TestClients, transactionErrorKey, transactionSuccess, } from "@gala-chain/test";
import { GalaChainResponse } from "@gala-chain/api";
import { ChainClient, ChainUser } from "@gala-chain/client";
import { AppleTreeDto, AppleTreesDto, FetchTreesDto, PagedTreesDto, PickAppleDto, Variety } from "../src/apples";

describe("Apple trees", () => {
const appleContractConfig = {apples: {name: "AppleContract", api: appleContractAPI}};
let client: AdminChainClients<typeof appleContractConfig>;
let user: ChainUser;

beforeAll(async () => {
client = await TestClients.createForAdmin(appleContractConfig);
user = await client.createRegisteredUser();

});

afterAll(async () => {
await client.disconnect();

});
...

submitTransaction(method: string): Promise<GalaChainResponse<unknown>>;
submitTransaction(method: string, dto: ChainCallDTO): Promise<GalaChainResponse<unknown>>;
submitTransaction<T>(method: string, resp: ClassType<Inferred<T>>): Promise<GalaChainResponse<T>>;
submitTransaction<T>(method: string, dto: ChainCallDTO, resp: ClassType<Inferred<T>>): Promise<GalaChainResponse<T>>;

evaluateTransaction(method: string): Promise<GalaChainResponse<unknown>>;
evaluateTransaction(method: string, dto: ChainCallDTO): Promise<GalaChainResponse<unknown>>;
evaluateTransaction<T>(method: string, resp: ClassType<Inferred<T>>): Promise<GalaChainResponse<T>>;
evaluateTransaction<T>(method: string, dto: ChainCallDTO, resp: ClassType<Inferred<T>>): Promise<GalaChainResponse<T>>;

7.2.1 Writing integration tests

- 24/37 - © 2024 Gala Games



If you choose not to use a custom API, you can create a test client as follows:

This way you will be able to use only the generic methods to call chaincodes: client.apples.evaluateTransaction(...)  or 

client.apples.submitTransaction(...) .

However, defining a custom API offers type-safe calls, as demonstrated in the apples test suite. You can define it as follows:

And provide it for client creation:

And it allows you to use type-safe calls, defined in the API, like client.apples.PlantTrees(...)  or client.apples.FetchTrees(...) .

Test 1. Plant a bunch of trees

In this test case, we create a DTO with three trees to plant. We sign the DTO with the user's private key to prove the identity of

the user. This is required, in contrast to unit tests.

Then we call PlantTrees  method, defined in our custom API, and we assert that the response is successful.

As a result the test writes three trees to the blockchain, planted by the user. We will use them in the next test.

Test 2. Fetch GALA trees planted by a user

const appleContractConfig = {apples: "AppleContract"};
let client: AdminChainClients<typeof appleContractConfig>;
...
beforeAll(async () => {
client = await TestClients.createForAdmin(appleContractConfig);
...

interface AppleContractAPI {
PlantTrees(dto: AppleTreesDto): Promise<GalaChainResponse<void>>;
FetchTrees(dto: FetchTreesDto): Promise<GalaChainResponse<PagedTreesDto>>;

}

function appleContractAPI(client: ChainClient): AppleContractAPI {
return {
PlantTrees(dto: AppleTreesDto) {
return client.submitTransaction("PlantTrees", dto) as Promise<GalaChainResponse<void>>;

},
FetchTrees(dto: FetchTreesDto) {
return client.evaluateTransaction("FetchTrees", dto, PagedTreesDto);

}
};

}

const appleContractConfig = {apples: {name: "AppleContract", api: appleContractAPI}};
let client: AdminChainClients<typeof appleContractConfig>;
...
beforeAll(async () => {
client = await TestClients.createForAdmin(appleContractConfig);
...

test("Plant a bunch of trees", async () => {
// Given
const dto = new AppleTreesDto([
new AppleTreeDto(Variety.GALA, 1),
new AppleTreeDto(Variety.GOLDEN_DELICIOUS, 2),
new AppleTreeDto(Variety.GALA, 3),

])
.signed(user.privateKey, false);

// When
const response = await client.apples.PlantTrees(dto);

// Then
expect(response).toEqual(transactionSuccess());

});

test("Fetch GALA trees planted by a user", async () => {
// Given
const dto = new FetchTreesDto(user.identityKey, Variety.GALA)
.signed(user.privateKey, false);

// When
const response = await client.apples.FetchTrees(dto);

// Then
expect(response).toEqual(transactionSuccess({

7.2.1 Writing integration tests

- 25/37 - © 2024 Gala Games



In the previous test, we planted three trees, two of them are GALA. In this test, we fetch all GALA trees planted by the user.

The response contains two trees, planted by the user, and the bookmark for fetching next page (though in this case, it's empty).

Test 3. Fail to pick a GOLDEN_DELICIOUS apple because tree is too young

In this test case, we try to pick an apple from the tree that was planted in the first test. However, the tree is too young, so we

expect an error.

These examples provide a comprehensive guide for unit and integration testing of GalaChain smart contracts using the @gala-

chain/test  package. Adjust and expand the provided code snippets based on your specific contract implementations and testing

requirements.

trees: [
expect.objectContaining({plantedBy: user.identityKey, variety: Variety.GALA, index: 1}),
expect.objectContaining({plantedBy: user.identityKey, variety: Variety.GALA, index: 3})

],
bookmark: ""

}))
})

test("Fail to pick a GOLDEN_DELICIOUS apple because tree is too young", async () => {
// Given
const dto = new PickAppleDto(user.identityKey, Variety.GOLDEN_DELICIOUS, 2)
.signed(user.privateKey, false);

// When
const response = await client.apples.PickApple(dto);

// Then
expect(response).toEqual(transactionErrorKey("NO_APPLES_LEFT"));

});

7.2.1 Writing integration tests

- 26/37 - © 2024 Gala Games



8. Chaincode deployment

Chaincode is published as a Docker image to GalaChain repository. Once the image is published, it can be deployed to GalaChain

testnet or sandbox. In order to publish and deploy chaincode, you need to contact GalaChain support and add provide your

secp256k1 public key.

8.1 The process

Build and publish chaincode Docker image.

Sample for DockerHub (It uses the ttl.sh to make it available for 1 day):

Provide us the image name (everything before the :  character of full docker tag). In the sample above it is the content of ttl.sh/

<IMAGE_NAME> .

Provide to GalaChain support chaincode information and public keys.

The keys are automatically generated when you initialize the project using galachain init , so you can find these keys in keys/gc-

admin-key.pub  and keys/gc-dev-key.pub .

Note: The developer key should be shared with all team members who want to deploy the chaincode.

If you can't find the keys, you can generate them using the following commands:

Deploy the chaincode to testnet or sandbox:

Note: you need to provide docker image name and also the version part. If you used the ttl.sh  example, the docker-image-tag

should be something like ttl.sh/<IMAGE_NAME>:1d .

Fetch information about the chaincode and deployments:

Once the status is CC_DEPLOYED  you can visit the Swagger webpage: https://gateway-testnet.galachain.com/docs/. You can find your

chaincode ( gc-<eth-addr> ). If the version is still unknown (and you see v?.?.? ), it means you may need to wait a couple of minutes

till the chaincode is ready.

Once it is ready, you can use the webpage to call chaincodes. It's good to start PublicKeyContract/GetPublicKey  with empty object as

request body. It should return the admin public key you provided before.

Call the deployed chaincode

You can use any REST API client (like axios  to call your chaincodes). Remember in most cases you will need to sign the DTO with

either the gc-admin-key  or any key of registered user.

We highly recommend to use the @gala-chain/api  library for handling DTOs and signing. For instance, you can register a user by

calling /api/.../...-PublicKeyContract/RegisterEthUser  and providing the following RegisterEthUser  as payload:

In the current version of the library, local environment exposes slightly different endpoints than the production environment. 

gcclient  and @gala-chain/client  packages are compatible with the local environment only. For calling the production environment,

you should consult the Swagger documentation at https://gateway-testnet.galachain.com/docs/, and use generic REST API client.

1. 

docker build --push -t ttl.sh/<IMAGE_NAME>:1d .

2. 

galachain keygen gc-admin-key
galachain keygen gc-dev-key

3. 

galachain deploy <docker-image-tag> <path-to>/gc-dev-key

4. 

galachain info <path-to>/gc-dev-key

5. 

const dto = new RegisterEthUser();
dto.publicKey = <newUserPublicKey>;
dto.sign(<gc-admin-key>);
const payloadString = dto.serialize();

8. Chaincode deployment

- 27/37 - © 2024 Gala Games

https://github.com/replicatedhq/ttl.sh
https://gateway-testnet.galachain.com/docs/
https://galahackathon.com/latest/chain-api-docs/classes/RegisterEthUserDto/
https://galahackathon.com/latest/chain-api-docs/classes/RegisterEthUserDto/
https://gateway-testnet.galachain.com/docs/


8.2 Reference

GalaChain CLI calls some local command and accesses ServicePortal REST API to accomplish certain tasks. Each REST request

body to ServicePortal (1) is signed using our default GalaChain signature type (secp256k1, non-DER), and (2) contains unique

request id. Both signing and creating the ID is managed by GalaChain CLI.

8.2.1 Fetching information about chaincode and deployments

This command will display:

Org, channel, chaincode names.

Status of the chaincode deployment.

8.2.2 Deploying the chaincode

Deploying to GalaChain testnet:

Deploying to GalaChain sandbox:

This command schedules deployment of published chaincode Docker image to GalaChain testnet or sandbox. In order to get the

information about the current status of deployments, you need to use galachain info  command.

galachain info

• 

• 

galachain test-deploy <docker-image-tag> <path-to>/gc-dev-key

galachain deploy <docker-image-tag> <path-to>/gc-dev-key

8.2 Reference

- 28/37 - © 2024 Gala Games



8.2.2 Deploying the chaincode

- 29/37 - © 2024 Gala Games



9. Authorization and authentication

GalaChain uses two layers of authorization and authentication to ensure that only authorized users can access the system. First

level, exposed to the client, is based on secp256k1 signatures and private/public key authorization. Second level uses native

Hyperledger Fabric CA users and organizations MSPs.

9.1 How it works

Client application signs the transaction with the end user private key.

GalaChain REST API uses custom CA user credentials to call the chaincode.

Chaincode checks the MSP of the CA user (Organization based authorization).

Chaincode recovers the end user public key from the dto and signature, and verifies if the end user is registered (Signature

based authorization).

The transaction is executed if both checks pass.

Note the difference between the end user and the CA user. The end user is the person who is using the client application,

while the CA user is the system-level application user that is used to call the chaincode.

In this document, if we refer to the user, we mean the end user.

9.2 Signature based authorization

Signature based authorization user secp256k1 signatures to verify the identity of the end user. It uses the same algorithm as

Ethereum.

9.2.1 Signing the transaction payload

Client side it is recommended to use @gala-chain/api , or @gala-chain/cli , or @gala-chain/connect  library to sign the transactions.

These libraries will automatically sign the transaction in a way it is compatible with GalaChain.

Using @gala-chain/api :

Using @gala-chain/cli :

1. 

2. 

3. 

4. 

5. 

import { createValidDto } from '@gala-chain/api';
import { ChainCallDTO } from "./dtos";
import { signatures } from "./index";

class MyDtoClass extends ChainCallDTO { ... }

// recommended way to sign the transaction
const dto1 = await createValidDto(MyDtoClass, {myField: "myValue"}).signed(userPrivateKey);

// alternate way, imperative style
const dto2 = new MyDtoClass({myField: "myValue"});
dto2.sign(userPrivateKey);

// when you don't have the dto class, but just a plain object
const dto3 = {myField: "myValue"};
dto3.signature = signatures.getSignature(dto3, Buffer.from(userPrivateKey));

galachain dto:sign -o=./output/path.json ./priv-key-file '{ "myField": "myValue" }'

9. Authorization and authentication

- 30/37 - © 2024 Gala Games



Using @gala-chain/connect :

For the @gala-chain/connect  library, signing is done automatically when you call the sendTransaction  method, and it is handled by

MetaMask wallet provider.

"Manual" process:

If you are not using any of the libraries, you can sign the transaction with the following steps:

You need to have secp256k1 private key of the end user.

Given the transaction payload as JSON object, you need to serialize it to a string in a way that it contains no additional spaces or

newlines, fields are sorted alphabetically, and all BigNumber  values are converted to strings with fixed notation. Also, you need to

exclude top-level signature  and trace  fields from the payload.

You need to hash the serialized payload with keccak256 algorithm (note this is NOT the same algorithm as SHA-3).

You need to get the signature of the hash using the private key, and add it to the payload as a signature  field. The signature should

be in the format of rsv  array, where r  and s  are 32-byte integers, and v  is a single byte.

It is important to follow these steps exactly, because chain side the same way of serialization and hashing is used to verify the

signature. If the payload is not serialized and hashed in the same way, the signature will not be verified.

9.2.2 Authenticating and authorizing in the chaincode

In the chaincode, before the transaction is executed, GalaChain SDK will recover the public key from the signature and check if

the user is registered. If the user is not registered, the transaction will be rejected with an error.

By default @Submit  and @Evaluate  decorators for contract methods enforce signature based authorization. The @GalaTransaction

decorator is more flexible and can be used to disable signature based authorization for a specific method. Disabling signature

based authorization is useful when you want to allow anonymous access to a method, but it is not recommended for most use

cases.

Chain side ctx.callingUser  property will be populated with the user's alias, which is either client|<custom-name>  or eth|<eth-

addr>  (if there is no custom name defined). Also, ctx.callingUserEthAddress  will contain the user's Ethereum address. This way it

is possible to get the current user's properties in the chaincode and use them in the business logic.

Additionally, we plan to support role-based access control (RBAC) in the future, which will allow for more fine-grained control

over who can access what resources. See the RBAC section for more information.

9.2.3 User registration

Gala chain does not allow anonymous users to access the chaincode. In order to access the chaincode, the user must be

registered with the chaincode. There are two methods to register a user:

RegisterUser  method in the PublicKeyContract .

RegisterEthUser  method in the PublicKeyContract .

Both methods require the user to provide their secp256k1 public key. The only difference between these two methods is that 

RegisterEthUser  does not require the alias  parameter, and it uses the Ethereum address (prefixed with eth| ) as the user's alias.

Access to RegisterUser  and RegisterEthUser  methods is restricted on the organization level. Only the organization that is

specified in the chaincode as CURATOR_ORG_MSP  environment variable can access these methods (it's CuratorOrg  by default).

Technically that means that the client application must use the CA user  that is registered with the CuratorOrg  organization to call

these methods. See the Organization based authorization section for more information.

import { GalachainConnectClient } from "@gala-chain/connect";

const client = new GalaChainConnectClient(contractUrl);
await client.connectToMetaMask();

const dto = ...;
const response = await client.send({ method: "TransferToken", payload: dto });

1. 

2. 

3. 

4. 

1. 

2. 

9.2.2 Authenticating and authorizing in the chaincode

- 31/37 - © 2024 Gala Games

https://crypto.stackexchange.com/questions/15727/what-are-the-key-differences-between-the-draft-sha-3-standard-and-the-keccak-sub


9.2.4 Default admin user

When the chaincode is deployed, it contains a default admin end user. It is provided by two environment variables: * 

DEV_ADMIN_PUBLIC_KEY  - it contains the admin user public key (sample: 

88698cb1145865953be1a6dafd9646c3dd4c0ec3955b35d89676242129636a0b ). * DEV_ADMIN_USER_ID  - it contains the admin user alias (sample: 

client|admin ; this variable is optional),

If the user profile is not found in the chain data, and the public key recovered from the signature is the same as the admin user

public key ( DEV_ADMIN_PUBLIC_KEY ), the admin user is set as the calling user. Additionally, if the admin user alias is specified

( DEV_ADMIN_USER_ID ), it is used as the calling user alias. Otherwise, the default admin user alias is eth|<eth-addr-from-public-key> .

The admin user is required to register other users.

For GalaChain TestNet the admin user public key is specified by the adminPublicKey  registration parameter.

Note the admin uses is an end user, not a CA user, and it cannot bypass the organization based authorization. If you want to use

the admin user to register other users, you need to use the CA user that is registered with the curator organization.

9.3 Organization based authorization

Organization based authorization uses Hyperledger Fabric CA users and organizations MSPs to verify the identity of the caller. It

is used to restrict access to the chaincode method to a specific organization.

You can restrict access to the contract method to a specific organizations by setting the allowedOrgs  property in the 

@GalaTransaction .

For the PublicKeyContract  chaincode, the CURATOR_ORG_MSP  environment variable is used as the organization that is allowed to

register users (default value is CuratorOrg ). It is recommended to use the same variable for curator-level access to the chaincode

methods.

9.4 Next: Role Based Access Control (RBAC)

GalaChain v2 will drop support for the chaincode level authorization using Orgs and MSPs. Instead, we will introduce a new Role

Based Access Control (RBAC) system that will allow for more fine-grained control over who can access what resources.

The allowedOrgs  property will be removed from the chaincode definition and replaced with a new allowedRoles  property. For

instance, instead of specifying that only CuratorOrg  can access a certain chaincode, you will be able to specify that only users

with the CURATOR  role can access it. User roles will be saved with UserProfile  objects in chain data.

See the current progress in the RBAC issue.

@GalaTransaction({
allowedOrgs: ["SomeRandomOrg"]

})

9.2.4 Default admin user

- 32/37 - © 2024 Gala Games

https://github.com/GalaChain/sdk/issues/249


10. From zero to deployment with GalaChain SDK

GalaChain SDK allows you to develop and deploy GalaChain chaincodes (contracts) in TypeScript. This tutorial will guide you

through the process of creating a new GalaChain chaincode, connecting it with GalaChain network, deploying, and calling it.

10.1 1. Install the GalaChain CLI

GalaChain SDK provides a CLI to manage your chaincode. You can install it with:

To verify it works you can use:

GalaChain CLI requires Node.js v18+. For running a local test network you also need Docker with Docker Compose, and jq . If

you work on Windows, you either need to have WSL, or you can use our Dev Containers.

10.2 2. Initialize the project from template

GalaChain CLI can create a fully functional sample GalaChain chaincode with some features, tests, local env. setup and many

others. Just type:

This will create a new directory my-gc-chaincode  with the chaincode template. Change the directory to the newly created one and

see what's inside:

Among others, you will find the following directories: - src  - the source code of your chaincode, - e2e  - end-to-end tests for your

chaincode, - keys  - keys that are required for calling our managed infrastructure. It contains two files: gc-admin-key.pub , and gc-

dev-key.pub .

Additionally, init command creates private keys for the chaincode admin and developer in your home directory at ~/.gc-keys/

<chaincode-name> , where <chaincode-name>  consists of gc-  prefix and eth address calculated from chaincode admin public key.

10.3 3. Update the contract (optional)

The chaincode template comes with some sample contract code. It exposes three contract classes: - PublicKeyContract  - makes

the chaincode conform to the GalaChain authorization model (the only one you should not modify), - GalaChainTokenContract  -

contains features for managing tokens (feel free modify or remove it if you want), - AppleContract  - a sample showcase contract,

probably the easier to start with.

Feel free to modify the contract code to suit your needs.

If you want to verify that your contract works, you can start the local test network with:

And then run the end-to-end tests with:

See the Chaincode Development and Chaincode Testing reference for more details.

npm i -g @gala-chain/cli

galachain --help

galachain init my-gc-chaincode

cd my-gc-chaincode
ls

npm run network:start

npm run test:e2e

10. From zero to deployment with GalaChain SDK

- 33/37 - © 2024 Gala Games

https://galahackathon.com/v1.1.0/getting-started/#using-dev-containers-linux-or-macos


10.4 4. Prepare and publish chaincode docker image

Before you can deploy your chaincode, you need to build a Docker image with it and publish it to a registry of your choice (e.g.

Docker Hub).

Chaincode template comes with a Dockerfile  that you should use to build a chaincode image. Also, it is recommended to use 

buildx  to ensure that the image architecture is linux/amd64  (required by GalaChain network).

Assuming you have Docker tag name in $TAG  environment variable, you can build and publish the image with the following

commands:

Docker image should be publicly accessible, as GalaChain network will download it during the deployment.

10.5 5. Connect your chaincode with GalaChain network

Since this is an early access feature, the ability to deploy to the testnet requires GalaChain approval. We require the following

data to approve your registration: - Docker image tag (without the version, or :latest  part; the image needs to be publicly

available), - Chaincode admin public key (the content of keys/gc-admin-key.pub  file), - Developer public keys (the content of keys/

gc-dev-key.pub  files of all developers who want to deploy the chaincode).

The channel admin public key is used as a public key of the channel admin (the initial, single user on the chain with admin

permissions). Developer public keys are used to sign deploy requests in CLI.

After the approval, call the following command to verify you registration:

You should get a JSON response with your chaincode information. Note the chaincode  field, which is your chaincode name, and

the image  field, which is the Docker image tag you provided.

10.6 6. Deploy the chaincode

To deploy the chaincode, you need to call the following command:

Replace <image-tag>  with the Docker image tag you provided, plus the version (e.g. my-registry/my-gc-chaincode:1.0.0 ).

The command will deploy the chaincode to the GalaChain network. The deployment process may take a while, as the network

needs to download the chaincode image and start it.

You can verify the deployment status with galachain info  command.

See the Chaincode Deployment reference for more details.

10.7 7. Call REST API

GalaChain Gateway provides a REST API to interact with the chaincode. The simplest way to call it is to use curl  (for

convenience, you can use galachain info  and jq  to build chaincode url):

docker buildx build --platform linux/amd64 -t $TAG .
docker push $TAG

galachain info

galachain deploy <image-tag>

info=$(galachain info)
chaincode=$(jq -r '.chaincode' <<< $info)
channel=$(jq -r '.channel' <<< $info)
url=https://gateway-testnet.galachain.com/api/$channel/$chaincode-AppleContract/GetChaincodeVersion

curl -X POST -d '{}' $url

10.4 4. Prepare and publish chaincode docker image

- 34/37 - © 2024 Gala Games



You can also visit the GalaChain Gateway page at https://gateway-testnet.galachain.com/docs to see the Swagger UI and explore

the API.

Additionally, which is most convenient, you can use the GalaChain client library to interact with the chaincode.

Also remember to sign the payload with your private key before sending it to the network. The initial user on chain is the admin,

so you can use the relevant gc-admin-key  from the ~/.gc-keys/<chaincode-name>  directory. See the Chaincode Client and the 

Authorization reference for more details.

const params: RestApiClientConfig = {
apiUrl: "https://gateway-testnet.galachain.com/api",
configPath: path.resolve(__dirname, "api-config.json")

};

const client: ChainClient = gcclient
.forApiConfig(params)
.forContract(contract);

10.7 7. Call REST API

- 35/37 - © 2024 Gala Games

https://gateway-testnet.galachain.com/docs


11. Using Windows with WSL

11.1 How to use GalaChain with Windows Subsystem for Linux (WSL)

11.1.1 1. Install Docker Desktop

Download and install Docker Desktop from the official website: https://www.docker.com/products/docker-desktop

If you already have Docker Desktop installed, make sure to update it to the latest version.

11.1.2 2. Install WSL 2 and a Ubuntu-20.04 distribution

Follow the official guide to install WSL 2: https://docs.microsoft.com/en-us/windows/wsl/install

We reccomend using Ubuntu-20.04 as your distribution. You can install it running the following command on PowerShell:

Here is a short video from Microsoft about how to install WSL 2 and how to prepare it to build Node.js applications:

11.1.3 3. Enable WSL integration on Docker Desktop

Open Docker Desktop and go to Settings  > Resources  > WSL Integration  and enable the integration with your WSL distribution.

11.1.4 4. Install dependencies and start network

Use the WSL extension on VSCode to connect to your WSL distribution.

Install Node Version Manager (NVM) on your WSL distribution: https://learn.microsoft.com/en-us/windows/dev-environment/

javascript/nodejs-on-wsl#install-nvm-nodejs-and-npm

wsl --install -d Ubuntu-20.04

1. 

2. 

11. Using Windows with WSL

- 36/37 - © 2024 Gala Games

https://www.docker.com/products/docker-desktop
https://docs.microsoft.com/en-us/windows/wsl/install
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl


Install yq  and jq  on your WSL distribution: 

At this point your WSL environment should be ready to use GalaChain. Follow the instructions on the Getting Started guide to

install the CLI and initialize your project.

3. 

sudo snap install yq jq

4. 

11.1.4 4. Install dependencies and start network

- 37/37 - © 2024 Gala Games


	GalaChain SDK Docs
	1. GalaChain SDK
	1.1 Features
	1.2 Tutorials
	1.3 Working with GalaChain
	1.4 Reference documentation
	1.5 Documentation in PDF format

	2. GalaChain
	2.1 What is GalaChain?
	2.2 Why is GalaChain?
	2.3 What kind of technology is GalaChain?
	2.4 When is GalaChain?
	2.5 Where do nodes come in?
	2.6 How fast is GalaChain?
	2.7 GalaChain for Publishers
	2.8 GalaChain for Developers

	3. Getting started
	3.1 Option 1: Local Environment (Linux, MacOS, or Windows with WSL)
	3.1.1 Requirements
	3.1.2 1. Install our CLI
	3.1.3 2. Initialize your project
	3.1.4 3. Start the network
	3.1.5 4. Run integration tests
	3.1.6 5. Verify changes in block browser and GraphQL
	3.1.7 6. Next steps

	3.2 Option 2: Use Docker image (Linux, MacOS or Windows)
	3.2.1 Requirements
	3.2.2 1. Run the Docker image
	3.2.3 2. Open the running container
	2.1 Open the container with bash
	2.2 Open the container with VSCode (Requires VSCode and Dev Containers Extension)

	3.2.4 3. Start the network
	3.2.5 4. Run integration tests
	3.2.6 5. Verify changes in block browser and GraphQL

	3.3 Option 3: Using Dev Containers (Linux or MacOS)
	3.3.1 Requirements
	3.3.2 1. Install our CLI
	3.3.3 2. Initialize your project
	3.3.4 3. Open in a Dev Container
	3.3.5 4. Install dependencies and start network
	3.3.6 5. Run integration tests
	3.3.7 6. Verify changes in block browser and GraphQL


	4. Troubleshooting
	4.1 Docker Desktop on Windows
	If you are using Windows with WSL don't forget to enable integration with WSL on Docker Desktop.
	Docker: image operating system "linux" cannot be used on this platform: operating system is not supported.
	Docker: "no matching manifest for windows/amd64 in the manifest list entries".

	4.2 Docker
	Docker: Error response from daemon: Conflict. The container name "/" is already in use by container "".

	4.3 WSL
	./fablo-target/fabric-config/configtx.yaml: no such file or directory
	docker: Got permission denied


	5. Chaincode development
	5.1 Contract classes
	5.2 Transaction decorators
	5.3 Transaction context
	5.4 Authentication and authorization
	5.4.1 Additional notes about signatures
	5.4.2 Restricting access by organization name

	5.5 DTO types
	5.6 Objects saved on chain
	5.6.1 Ranged objects

	5.7 Error handling
	5.8 State cache
	5.9 Prevent duplicate calls

	6. Chaincode Client
	6.1 Hyperledger Fabric Client
	6.1.1 HFClientConfig
	6.1.2 ContractConfig
	6.1.3 Creating the client

	6.2 REST API Client
	6.2.1 RestApiClientConfig
	6.2.2 ContractConfig
	6.2.3 Creating the client

	6.3 Builder and actual client
	6.4 Extending the client API

	7. Testing your chaincode
	7.1 Unit testing
	7.1.1 Writing unit tests
	Test 1. AppleContract should allow to plant a tree
	Test 2. AppleContract should fail to plant a tree if tree already exists
	Test 3. AppleContract should allow to pick an apple

	7.1.2 Using fixture for regular functions
	7.1.3 Additional notes
	Signatures
	beforeTransaction and afterTransaction


	7.2 Integration testing
	7.2.1 Writing integration tests
	Setup
	Optional setup -- custom API
	Test 1. Plant a bunch of trees
	Test 2. Fetch GALA trees planted by a user
	Test 3. Fail to pick a GOLDEN_DELICIOUS apple because tree is too young



	8. Chaincode deployment
	8.1 The process
	8.2 Reference
	8.2.1 Fetching information about chaincode and deployments
	8.2.2 Deploying the chaincode


	9. Authorization and authentication
	9.1 How it works
	9.2 Signature based authorization
	9.2.1 Signing the transaction payload
	Using @gala-chain/api:
	Using @gala-chain/cli:
	Using @gala-chain/connect:
	"Manual" process:

	9.2.2 Authenticating and authorizing in the chaincode
	9.2.3 User registration
	9.2.4 Default admin user

	9.3 Organization based authorization
	9.4 Next: Role Based Access Control (RBAC)

	10. From zero to deployment with GalaChain SDK
	10.1 1. Install the GalaChain CLI
	10.2 2. Initialize the project from template
	10.3 3. Update the contract (optional)
	10.4 4. Prepare and publish chaincode docker image
	10.5 5. Connect your chaincode with GalaChain network
	10.6 6. Deploy the chaincode
	10.7 7. Call REST API

	11. Using Windows with WSL
	11.1 How to use GalaChain with Windows Subsystem for Linux (WSL)
	11.1.1 1. Install Docker Desktop
	11.1.2 2. Install WSL 2 and a Ubuntu-20.04 distribution
	11.1.3 3. Enable WSL integration on Docker Desktop
	11.1.4 4. Install dependencies and start network



