
GalaChain SDK Docs

Gala Games

© 2023 Gala Games

Table of contents

41. GalaChain SDK

41.1 Features

41.2 Working with GalaChain

41.3 Deploying chaincode to GalaChain

41.4 Galachain post deployment

41.5 Reference documentation

41.6 Documentation in PDF format

52. GalaChain

52.1 What is GalaChain?

52.2 Why is GalaChain?

52.3 What kind of technology is GalaChain?

52.4 When is GalaChain?

52.5 Where do nodes come in?

52.6 How fast is GalaChain?

52.7 GalaChain for Publishers

62.8 GalaChain for Developers

73. Getting started

73.1 Local Environment (Linux, MacOS, or Windows with WSL)

83.2 Using Dev Containers (Linux or MacOS)

93.3 Use Docker file + Dev Containers (Linux, MacOS or Windows)

104. Chaincode development

104.1 Contract classes

114.2 Transaction decorators

114.3 Transaction context

124.4 Authentication and authorization

134.5 DTO types

134.6 Objects saved on chain

144.7 Error handling

154.8 State cache

154.9 Prevent duplicate calls

165. Chaincode Client

165.1 Hyperledger Fabric Client

175.2 REST API Client

185.3 Builder and actual client

185.4 Extending the client API

Table of contents

- 2/34 - © 2023 Gala Games

196. Testing your chaincode

196.1 Unit testing

216.2 Integration testing

257. Chaincode deployment

257.1 The process

257.2 Reference

288. Chaincode Post Deployment

288.1 How to create keys

288.2 How to generate a new encryption key

288.3 How to create a new curator user

288.4 How to save the generated public key for the new curator user

298.5 How to add the new curator user as an authority on a token

298.6 How to sign a DTO

309. Hackathon

309.1 Deploy

329.2 Hackathon

329.3 Schedule

329.4 Rules

329.5 Prizes

329.6 Atmosphere

329.7 Getting Started

Table of contents

- 3/34 - © 2023 Gala Games

1. GalaChain SDK

Welcome to developing with GalaChain! GalaChain is a layer 1 blockchain designed to be the foundation of Web3 Gaming,

Entertainment and more.

1.1 Features

Utility libraries to allow seamless development of chaincodes

Local development environment with hot code reload and local block browser

Easy start with chaincode template

Integration with GalaChain

Read more about GalaChain.

1.2 Working with GalaChain

Getting started guide

Chaincode development

Chaincode client

Chaincode testing

1.3 Deploying chaincode to GalaChain

Chaincode deployment

1.4 Galachain post deployment

Chaincode post deployment

1.5 Reference documentation

chain-api - Common types, DTOs (Data Transfer Objects), APIs, signatures, and utils for GalaChain

chain-client - GalaChain client library

chain-test - Unit testing and integration testing for GalaChain

chaincode framework - Framework for building chaincodes on GalaChain

1.6 Documentation in PDF format

PDF file

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1. GalaChain SDK

- 4/34 - © 2023 Gala Games

2. GalaChain

2.1 What is GalaChain?

GalaChain is a layer 1 blockchain designed to be the foundation of Web3 Gaming, Entertainment and more.

2.2 Why is GalaChain?

When Gala Games began integrating blockchain technology with games, we quickly realized that existing blockchain technology

was not built to support the kinds of functionality that players and developers desired in Web3 gaming. We set out on a quest to

build something different. As Gala has evolved, we recognize even more Web3 use cases that GalaChain is perfect for. We're

building a foundation for Web3 Gaming, Entertainment and beyond.

2.3 What kind of technology is GalaChain?

The core technology that GalaChain is built on is Hyperledger Fabric. We have built infrastructure and code to add capabilities to

easily onboard games and users. Now it's very straightforward to write contracts using typescript. We've also created a Token

contract that can be implemented in any channel. This immediately gives the channel access to native Token operations such as

transfer, mint, allowances, swapping, lending, and more.

2.4 When is GalaChain?

Now! GalaChain has already been integrated into live products including SpiderTanks, Music, PokerGO, and Champions Arena.

Many more are being onboarded in preparation for launch. Additionally, we're working incrementally toward broader public

access and participation.

2.5 Where do nodes come in?

We've got a lot of ideas about that! The first GalaChain workload that will be on nodes is likely to be one that helps perform

bridge transaction verifications. More info coming soon!

2.6 How fast is GalaChain?

Super-fast (or slow). One of the cool features of GalaChain is that each channel can be configured for different performance

options. Maybe your product wants to drop big chunks of data in each block and there's time between transactions, or you could

have small data, moving really fast. It's configurable! We typically don't talk about tx/s simply because it's relative to the use case

and so one data point may not be useful for everyone.

2.7 GalaChain for Publishers

Managed end-to-end blockchain solution

Managed infrastructure

Framework to lower chaincode development costs

Basic token features out of the box

Monetization with fees

Built in bridge

•

•

•

•

•

•

2. GalaChain

- 5/34 - © 2023 Gala Games

https://gala.games
https://www.hyperledger.org/projects/fabric

2.8 GalaChain for Developers

A framework and a set of tools for easy chaincode development

Open Source SDK, battle tested at Gala

Local development tools

Standardized and documented REST API

Testnet and Mainnet

CLI to manage the whole development cycle

•

•

•

•

•

•

2.8 GalaChain for Developers

- 6/34 - © 2023 Gala Games

3. Getting started

3.1 Local Environment (Linux, MacOS, or Windows with WSL)

If you are using Windows with WSL don't forget to enable integration with WSL on Docker Desktop.

3.1.1 Requirements

You need to have the following tools installed on your machine: - Node.js 16+ - Docker and Docker Compose - jq and yq

3.1.2 1. Install our CLI

Check the CLI:

3.1.3 2. Initialize your project

It will create a sample project inside <project-name> directory.

Install all dependencies:

3.1.4 3. Start the network

The network will start in hot-reload/watch mode, so leave the prompt with logs running and execute the following commands in a

new prompt.

3.1.5 4. Run integration tests

Now you can run integration tests with:

3.1.6 5. Verify changes in block browser and GraphQL

Navigate to http://localhost:3010/blocks to see our block browser which allows you to see what's saved on your local GalaChain

network.

Navigate to http://localhost:3010/graphiql to interact with GraphQL and execute queries.

3.1.7 6. Next steps

Iterate on your chaincode

Get familiar with GalaChain SDK

Deploy chaincode to gc-testnet

npm i -g @gala-chain/cli

galachain --help

galachain init <project-name>

npm i

npm run network:start

npm run test:e2e

•

•

•

3. Getting started

- 7/34 - © 2023 Gala Games

https://jqlang.github.io/jq/
https://github.com/mikefarah/yq
http://localhost:3010/blocks
http://localhost:3010/graphiql

3.2 Using Dev Containers (Linux or MacOS)

3.2.1 Requirements

VSCode

Dev Containers Extension

Node.js

Docker

3.2.2 1. Install our CLI

Check the CLI:

3.2.3 2. Initialize your project

It will create a sample project inside <project-name> directory.

Open the directory on VSCode.

3.2.4 3. Open in a Dev Container

While in VSCode, press F1 to open the Command Palette and search for Dev Containers: Reopen in Container

You can also click on the Remote Indicator in the status bar to get a list of the most common commands.

•

•

•

•

npm i -g @gala-games/chain-cli

galachain --help

galachain init <project-name>

cd <project-name>
code .

3.2 Using Dev Containers (Linux or MacOS)

- 8/34 - © 2023 Gala Games

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers

3.2.5 4. Install dependencies and start network

Open a new prompt when in a Dev Conatiner and run the commands:

The network will start in dev mode, so leave the prompt with logs running and execute the following commands in a new prompt.

3.2.6 5. Run integration tests

Now you can run integration tests with:

3.2.7 6. Verify changes in block browser and GraphQL

Navigate to http://localhost:3010/blocks to see our block browser which allows you to see what's saved on your local GalaChain

network.

Navigate to http://localhost:3010/graphiql to interact with GraphQL and execute queries.

3.3 Use Docker file + Dev Containers (Linux, MacOS or Windows)

3.3.1 Requirements

VSCode

Dev Containers Extension

Node.js

Docker

3.3.2 1. Install our CLI

Check the CLI:

3.3.3 2. Initialize your project

It will create a sample project inside <project-name> directory.

3.3.4 3. Docker file and Instructions

Navigate to the docker folder where you can find a Docker file and instructions about how to use it.

Follow the steps on the README.md file.

npm install

npm run network:start

npm run test:e2e

•

•

•

•

npm i -g @gala-games/chain-cli

galachain --help

galachain init <project-name>

cd <project-name>/docker

3.2.5 4. Install dependencies and start network

- 9/34 - © 2023 Gala Games

http://localhost:3010/blocks
http://localhost:3010/graphiql
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers

4. Chaincode development

The GalaChain SDK allows you to write Hyperledger Fabric chaincodes in TypeScript in a more convenient way, while adjusting

them to the GalaChain platform.

Key features: - Contract classes - Transaction decorators - Transaction context - Authentication and authorization - DTO types -

Objects saved on chain - Error handling - State cache - Recommended project structure - Tracing support

All samples in this document come from the GalaChain chaincode template. You can find the template in our source code in

chain-cli/chaincode-template directory, or initialize it with the galachain init command.

4.1 Contract classes

The GalaChain SDK allows developers to write chaincodes in an object-oriented way. It reuses the concept of contract classes

and contract methods from the Hyperledger Fabric Contract API. Typically, a contract class is a TypeScript class that extends

the GalaContract class from the @gala-chain/chaincode library. It is recommended to treat each contract class as a controller in

the MVC pattern (Model, View, Controller) and minimize the logic within it.

Sample contract class:

GalaContract is a base class for all contract classes. It provides several features: - It ensures that all contract methods have

access to the proper transaction context (GalaChainContext , see Transaction decorators). - It adds common methods for a

contract: GetChaincodeVersion , GetContractAPI , GetObjectByKey , and GetObjectHistory . - It saves all writes from the GalaChain

state cache to the ledger at the end of a successful transaction (see State cache). - It enhances tracing (see Tracing support).

The constructor GalaContract class requires two parameters: name and version . name is a name of the contract, and version is a

version of the contract. Typically, you can read the version from the package.json file and version numbers conventionally follow

the npm / semver standards.

Each method of the contract class require two parameters: ctx and dto . ctx is a transaction context, an object that extends

Hyperledger Fabric Context class. Aside from the standard Fabric context, it provides some additional methods and properties

(see Transaction context).

The second parameter, dto , is an object that contains all parameters of the transaction (see DTO types).

Also, all contract methods are decorated with @Submit , @Evaluate , or @GalaTransaction decorators (see Transaction decorators).

These decorators are required for various reasons. For instance, they allow you to properly expose the contract methods in

GalaChain, deserialize and validate input parameters, normalize the response, handle authorization, etc.

import { Evaluate, GalaChainContext, GalaContract, Submit } from "@gala-chain/chaincode";
import { version } from "../../package.json";
import { AppleTreeDto, FetchTreesDto, PagedTreesDto, fetchTrees, plantTree } from "../apples";

export class AppleContract extends GalaContract {
constructor() {
super("AppleContract", version);

}

@Submit({
in: AppleTreeDto

})
public async PlantTree(ctx: GalaChainContext, dto: AppleTreeDto): Promise<void> {
await plantTree(ctx, dto);

}

@Evaluate({
in: FetchTreesDto,
out: PagedTreesDto

})
public async FetchTrees(ctx: GalaChainContext, dto: FetchTreesDto): Promise<PagedTreesDto> {
return await fetchTrees(ctx, dto);

}
}

4. Chaincode development

- 10/34 - © 2023 Gala Games

https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/
https://docs.npmjs.com/cli/v10/configuring-npm/package-json#version
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/fabric-contract-api.Context.html
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/fabric-contract-api.Context.html

4.2 Transaction decorators

Transaction decorators enhance the contract methods with various features: - They allow to properly expose the contract

methods API in GalaChain. - They deserialize and validate the DTO before method is called. - They normalize the chaincode

method output from any type to GalaChainResponse . - They handle authorization. - They can be used to ensure uniqueness of the

transaction in case of duplicate calls. - They can be used to define actions that should be executed before and after the

transaction.

GalaChain defines three decorator types: @Submit , @Evaluate , and @GalaTransaction .

@Submit decorator is used for contract methods that modify the ledger state.

@Evaluate decorator is used for contract methods that only read the ledger state.

@GalaTransaction decorator is used for both types of contract methods, but is more verbose. It is recommended to use @Submit

and @Evaluate decorators instead.

All decorators support the following parameters: - in - input DTO class that extends GalaChainDto class from @gala-chain/

chaincode library (default: ChainCallDTO class). This parameter is used to properly deserialize and validate the input parameters

of the transaction, and to properly expose the contract method API in GalaChain. It is highly recommended to provide a custom

dto class as a parameter, otherwise the validation won't work at all: There will be issues with deserialization of non-standard

input parameters like nested classes, BigDecimal values etc. - out - output type of the chaincode method (default: "null"). It

might be a string representing the type ("number" , "string" , "boolean" , "null" , "object"), or a custom class, or an object

{ "arrayOf": X } where X is a string representing the type or a custom class. This parameter is used to properly expose the

contract method API in GalaChain. - description - optional description of the contract method that is presented in GalaChain

contract method API definition. - allowedOrgs - optional parameter to define which organizations are allowed to call the contract

method. It is a string array with organization names. If not provided, all organizations are allowed to call the contract method. -

apiMethodName - optional name of the contract method that should be used in the GalaChain REST API. If not provided, the name

of the contract method is used. - sequence - optional parameter for advanced use cases. It means that the method call should

actually be defined as a sequence of calls. It is useful when a GalaChain REST API call should consist of multiple calls, and each

call should be executed in a separate transaction in a separate block. The sequence of calls is handled by GalaChain REST API. -

enforceUniqueKey - ensures that DTO contain a uniqueKey property, which is required to prevent duplicate calls (see Prevent

attacks or bad data state from duplicate calls). - before - optional parameter defining a function to be executed before the actual

transaction (but after the authorization). - after - optional parameter defining a function to be executed after the actual

transaction (but before the state cache is saved to the ledger).

Additionally, @GalaTransaction decorator supports type and verifySignature parameters. type can be GalaTransactionType.SUBMIT

or GalaTransactionType.EVALUATE and means whether the transaction is a submit or evaluate transaction. verifySignature can be

true or false and means whether the transaction should be verified against the signature. It is NOT recommended to use

verifySignature as false , because it disables authorization for the transaction.

@Submit decorator is a shortcut for @GalaTransaction({ type: GalaTransactionType.SUBMIT, verifySignature: true }) . @Evaluate

decorator is a shortcut for @GalaTransaction({ type: GalaTransactionType.EVALUATE, verifySignature: true }) .

4.3 Transaction context

GalaChainContext is an object that extends Hyperledger Fabric Context class. Asides from standard Fabric context, it provides

some additional methods and properties:

callingUser - returns standardized user id with prefix and actual name (note calling user is something different, than user in

Fabric CA; see Authentication and authorization).

callingUserEthAddress - returns eth address that is derived from calling user public key (see Authentication and authorization).

txUnixTime - returns unix time of the transaction.

span - returns tracing span of the transaction (see Tracing support).

GalaChainContext also changes the behavior of the stub property. In a standard Fabric context, the stub property returns a

ChaincodeStub object. In a GalaChain context, the stub property returns a proxy object that wraps ChaincodeStub in a way to

support caching (see State cache).

•

•

•

•

•

•

•

4.2 Transaction decorators

- 11/34 - © 2023 Gala Games

https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/fabric-contract-api.Context.html
https://hyperledger.github.io/fabric-chaincode-node/release-2.2/api/fabric-contract-api.Context.html

Finally, it adds some customization to the logger property.

4.4 Authentication and authorization

A method call requires authorization when it is marked with @Submit or @Evaluate decorator, or with @GalaTransaction with

verifySignature: true .

Authorization is handled chaincode-side, on the basis of secp256k1 signature of the transaction. GalaChain recovers the public

key from the signature, and derives the corresponding eth address from the public key. Then, GalaChain checks whether the eth

address is registered in GalaChain as a user.

If the user is registered, ctx.callingUser and ctx.callingUserEthAddress properties are set in the transaction context.

ctx.callingUser is a standardized user id with prefix and actual name. It may be eth|<user-eth-address> or client|<user-alias> ,

depending on the way the user was registered (RegisterUser and RegisterEthUser respectively).

If the user is not registered, or the signature is missing or invalid, then the transaction is rejected.

Additional notes: * If a method is exposed but (1) does not require authorization (marked with @GalaTransaction with

verifySignature: false), and (2) its DTO does not have a signature, then ctx.callingUser contains the Fabric CA username

(client|<ca-username>) and executing ctx.callingUserEthAddress throws an exception. * If a method is exposed, does not require

authorization, and the DTO has a signature, then the regular authorization flow is performed.

4.4.1 Additional notes about signatures

A JSON payload to be signed is created from a DTO object without signature and trace properties, with its keys sorted

alphabetically, and no end of line character(s) at the end. (Further reading as to why the must be the case can be found in the

official Hyperledger Fabric documentation). Sample jq command to produce valid data to sign: jq -cSj "." dto-file.json .

Also, all BigNumber data should be provided as strings (not numbers or directly serialized BigNumber objects) with fixed decimal

point notation.

The EC secp256k1 signature should be created for keccak256 hash of the data. The recommended format of the signature is a

HEX encoded string, including r + s + v values. Signature in this format is supported by ethers library.

Sample signature:

GalaChain also supports DER encoded signatures for authorization, but since the DER signature does not contain v value (the

recovery part), you need to additionally provide signerPublicKey parameter to the transaction DTO.

Sample DER signature (first line), and the corresponding signerPublicKey (second line):

4.4.2 Restricting access by organization name

You can restrict access to a contract method by organization name using allowedOrgs parameter of the transaction decorators. It

is a string array with organization MSP names.

For example, if you want to allow only CuratorOrg and FarmerOrg to call a contract method, you can use:

GalaChain authorization will check whether the Fabric CA user which called the transaction belongs to one of the allowed

organizations. Thus, the check is not related with user profile saved on chain, but related with the CA user which called the

transaction.

b7244d62671319583ea8f30c8ef3b343cf28e7b7bd56e32b21a5920752dc95b94a9d202b2919581bcf776f0637462cb67170828ddbcc1ea63505f6a211f9ac5b1b

3045022100b7244d62671319583ea8f30c8ef3b343cf28e7b7bd56e32b21a5920752dc95b902204a9d202b2919581bcf776f0637462cb67170828ddbcc1ea63505f6a211f9ac5b
04fa7d9e30902207fd821a1518ce777e1935a45e52180d6a6339f37c3e3f759d1a64e33ed1e334070d37731f6ce3f4a5daa6ee4c9884f21860601fed892d40b2a9

@Submit({
in: AppleTreeDto,
allowedOrgs: ["CuratorOrg", "FarmerOrg"]

})

4.4 Authentication and authorization

- 12/34 - © 2023 Gala Games

https://hyperledger-fabric.readthedocs.io/en/release-2.4/chaincode4ade.html#json-determinism
https://docs.ethers.org/v5/
https://docs.ethers.org/v5/

Additionally, if you don't want to hardcode the organization names in the contract code, you can use AUTHORITY_ORG_NAME const

from @gala-chain/chaincode library. It takes the organization name from AUTHORITY_ORG_NAME environment variable (which defaults

to CuratorOrg).

4.5 DTO types

We consider DTO as an object that contains all parameters of the transaction (transaction input parameters). It is passed as a

second parameter to the contract method and deserialized with the use of transaction decorator in parameter.

Each DTO class should extend ChainCallDTO class from @gala-chain/chaincode library. It defines some additional fields that are

required for GalaChain to properly handle the transaction: - signature - optional signature of the transaction. It is required for

authorization (see Authentication and authorization). - signerPublicKey - optional signer public key of the transaction. It is

required for authorization when the transaction is signed with DER signature (see Authentication and authorization). - uniqueKey

- optional unique key of the transaction. It is required to prevent duplicate calls (see Prevent duplicate calls). - trace - optional

tracing span of the transaction (see Tracing support).

Sample DTO class:

GalaChain uses class-transformer and class-validator libraries for DTO serialization and validation. It also provides some

additional decorators for DTO properties, like @StringEnumProperty , or @BigNumberProperty . You should consult the documentation

of these libraries, especially for more complex use cases (including but not limited to): Nested objects, arrays of objects, etc.

(note decorators for trees property in the sample above).

Optionally, you can provide a @JSONSchema decorator from the class-validator-jsonschema library, either for whole DTO class, or

for each property. It is used to generate a JSON schema for the DTO, which is used in GalaChain REST API.

4.6 Objects saved on chain

GalaChain uses the same validation and serialization libraries for objects saved on chain as for DTOs (class-transformer and

class-validator). Accordingly, you can use the same decorators for objects saved on chain as for DTOs.

import { ChainCallDTO, StringEnumProperty } from "@gala-chain/api";
import { Type } from "class-transformer";
import { ArrayNotEmpty, ValidateNested } from "class-validator";

export enum Variety {
GALA = "GALA",
GOLDEN_DELICIOUS = "GOLDEN_DELICIOUS"

}

export class AppleTreeDto extends ChainCallDTO {
@StringEnumProperty(Variety)
public readonly variety: Variety;

public readonly index: number;
}

export class AppleTreesDto extends ChainCallDTO {
@ValidateNested({ each: true })
@Type(() => AppleTreeDto)
@ArrayNotEmpty()
public readonly trees: AppleTreeDto[];

}

import { BigNumberProperty, ChainKey, ChainObjectBase, StringEnumProperty } from "@gala-chain/api";
import BigNumber from "bignumber.js";
import { IsString } from "class-validator";
import { Variety } from "./types";

export class AppleTree extends ChainObject {
static INDEX_KEY = "GCAPPL";

@ChainKey({ position: 0 })
@IsString()
public readonly plantedBy: string;

@ChainKey({ position: 1 })
@StringEnumProperty(Variety)
public readonly variety: Variety;

@ChainKey({ position: 2 })
public readonly index: number;

4.5 DTO types

- 13/34 - © 2023 Gala Games

https://github.com/typestack/class-transformer
https://github.com/typestack/class-transformer
https://github.com/typestack/class-validator
https://github.com/typestack/class-validator
https://github.com/epiphone/class-validator-jsonschema
https://github.com/epiphone/class-validator-jsonschema
https://github.com/typestack/class-transformer
https://github.com/typestack/class-transformer
https://github.com/typestack/class-validator
https://github.com/typestack/class-validator

Aside from standard validation and serialization, GalaChain provides a @ChainKey decorator. It is used to define parts of the key of

the object saved on chain. For instance in the sample above, the key of the object saved on chain consists of INDEX_KEY ,

plantedBy , variety , and index properties. Since it is build from multiple properties, it is called a composite key.

Consider you have appleTree which is an instance of AppleTree class, and you want to save it on chain. You can use

putChainObject method from @gala-chain/chaincode library:

If you want to delete it from chain, you can use deleteChainObject method:

If you have a key of the object saved on chain (key), you can use getChainObject method to get the object from chain (AppleTree

class is required to properly deserialize the object):

You can get object history with getObjectHistory method:

And you can check if the object exists on chain with objectExists method:

Additionally, since GalaChain uses composite keys, you can get all objects with the same prefix using the

getObjectByPartialCompositeKey method. For instance, if you want to get all gala apple trees planted by a farmer, you can use:

There is also a relevant method that uses pagination (can be used only read-only transactions):

getObjectByPartialCompositeKeyWithPagination .

4.6.1 Ranged objects

GalaChain also supports ranged objects. Ranged objects do not use composite keys, so they can be used in Hyperledger Fabric

range queries.

Instead of ChainObject class, you should use RangedChainObject class. Then, you can use @ChainKey decorator to define the key

parts of the object saved on chain the same way as for ChainObject class. In order to put ranged object on chain, you should use

putRangedChainObject method.

4.7 Error handling

We recommend handling errors with exceptions. The GalaChain SDK provides a ChainError class that extends the Node.js Error

class, which additionally contains: * code property mapped to a corresponding HTTP code in GalaChain REST API. * key

property which is an autogenerated string key from the error class name (for easier debugging). * payload property which is an

optional object with additional information about the error.

The GalaChain SDK provides also several predefined error classes which contain proper code values: ValidationError ,

UnauthorizedError , PaymentRequiredError , ForbiddenError , NotFoundError , ConflictError , NoLongerAvailableError , DefaultError ,

RuntimeError , NotImplementedError . You may use them in your code or (preferably) create your own error classes that extend one

of the predefined error classes.

public readonly plantedAt: number;

@BigNumberProperty()
public applesPicked: BigNumber;

}

await putChainObject(ctx, appleTree);

await deleteChainObject(ctx, appleTree);

await getObjectByKey(ctx, AppleTree, key);

await getObjectHistory(ctx, key);

await objectExists(ctx, key);

await getObjectByPartialCompositeKey(ctx, AppleTree.INDEX_KEY, ["farmer1", Variety.GALA], AppleTree);

4.6.1 Ranged objects

- 14/34 - © 2023 Gala Games

When a contract method throws an error: * no state changes are saved to the ledger; * the error is logged; * the error is

automatically handled, so the response is always a GalaChainResponse object (in case of error the response object contains error

properites Status , Message , ErrorCode , ErrorKey , and ErrorPayload); * the transaction is saved on the ledger in transaction

history.

4.8 State cache

When you get state in Hyperledger Fabric, it always returns the latest value from the ledger. When you update the state in a

method, and get it again in the same method, it returns the same value as before the update. To avoid this behavior, the

GalaChain SDK has a built-in state cache.

This way, when you get state in a transaction method, and update it in the same method, the second get returns the updated

value.

The state cache also prevents inconsistent state in case of exceptions. Since all state changes are flushed to the ledger only at

the end of a successful transaction, if an exception is thrown, the state is not updated.

4.9 Prevent duplicate calls

Accidental (or maliciously intentional) duplicate calls of some transactions could potentially lead to bad data states, spend of

additional token quantities, application layer vulnerabilities, or other ill effects. To prevent this class of problems, DTOs can

contain a uniqueKey property. It is an optional string, provided client-side, that is used to prevent duplicate calls. If the same

uniqueKey is provided in two different transactions, the second transaction is rejected with UniqueTransactionConflictError error.

4.8 State cache

- 15/34 - © 2023 Gala Games

5. Chaincode Client

The @gala-chain/client package provides a client for interacting with the chaincode. Currently, it supports two client types: *

client for interacting directly with the Hyperledger Fabric network, built on top of the fabric-network and fabric-ca-client

packages; * client for interacting with the chaincode via REST API that meets the GalaChain REST API specification, used

internally at GalaGames.

They share the same API, so it is easy to switch between them, depending on your needs.

Also, @gala-chain/client package is designed to be lightweight. This is why fabric-network and fabric-ca-client dependencies

are marked as optional peerDependencies and should be installed separately.

5.1 Hyperledger Fabric Client

In order to connect to the Hyperledger Fabric network, you need to provide the following configuration: 1. HFClientParams -

information containing basic information about network topology and credentials for connecting to the network; 2.

ContractConfig - information about the chaincode that will be used to interact with the network. 3. Optionally, a custom API

specification to make the client type-safe.

5.1.1 HFClientConfig

The HFClientConfig interface defines parameters that are required to connect to the Hyperledger Fabric network.

orgMsp - Hyperledger Fabric MSP name of the organization that the client will connect to;

userId - id of the user in Fabric CA that will be used to connect to the network;

userPass - password of the user in CA;

connectionProfilePath - path to the connection profile file that describes the network topology.

Both adminId and adminPass are required to authorize the client with the network. If they are not provided, the client will try to

get them from the environment variables ADMIN_ID and ADMIN_PASS respectively.

The connectionProfilePath should refer to a valid connection profile JSON file. For local development, you can use the connection

profile provided in the <network-root>/connection-profiles directory of the network generated by GalaChain CLI.

5.1.2 ContractConfig

The ContractConfig interface defines parameters that are required to interact with the chaincode.

channelName - name of the channel that the client will connect to;

chaincodeName - name of the chaincode that the client will use to interact with the network;

contractName - name of the contract that the client will use to interact with the chaincode.

```typescript
const params: HFClientConfig = {
  orgMsp: "PartnerOrg1",
  userId: "admin",
  userPass: "adminpw",
  connectionProfilePath: path.resolve(networkRoot, "connection-profiles/cpp-partner.json")
};

• 

• 

• 

• 

const contract: ContractConfig = {
channelName: "product-channel",
chaincodeName: "basic-product",
contractName: "PublicKeyContract"

};

• 

• 

• 

5. Chaincode Client

- 16/34 - © 2023 Gala Games

https://www.npmjs.com/package/fabric-network
https://www.npmjs.com/package/fabric-network
https://www.npmjs.com/package/fabric-ca-client
https://www.npmjs.com/package/fabric-ca-client


5.1.3 Creating the client

The client creation is a two-step process. First, you need to create a client builder instance using the forConnectionProfile

method. Then the forContract  method returns the actual client instance.

As a result, you get a ChainClient  instance that can be used to interact with the chaincode. It supports evaluateTransaction  and 

submitTransaction  methods that are used to invoke chaincode functions.

After you end interacting with the chaincode, you should disconnect the client:

Otherwise, the client will keep the GRPC connection to the network open.

5.2 REST API Client

The REST API client is used to interact with the chaincode via REST API, that matches the specification of managed

infrastructure of GalaChain.

In order to connect to the REST API, you need to provide the following configuration: 1. RestApiClientConfig  - information

containing basic information about path mapping and credentials for connecting to the network; 2. ContractConfig  - information

about the chaincode that will be used to interact with the network. 3. Optionally, a custom API specification to make the client

type-safe.

5.2.1 RestApiClientConfig

The RestApiClientConfig  interface defines parameters that are required to connect to the REST API.

orgMsp  - Hyperledger Fabric MSP name of the organization that the client will connect to;

userKey  - key of the user in the API key store that will be used to connect to the network;

userSecret  - secret of the user in the API key store;

apiUrl  - URL of the REST API;

configPath  - path to the configuration file that describes path mapping for channels, chaincodes, and contracts. Sample

configuration file can be found in the e2e  directory of the chaincode generated from template by GalaChain CLI.

5.2.2 ContractConfig

The ContractConfig  interface defines parameters that are required to interact with the chaincode.

channelName  - name of the channel that the client will connect to;

chaincodeName  - name of the chaincode that the client will use to interact with the network;

contractName  - name of the contract that the client will use to interact with the chaincode.

const client: ChainClient = gcclient
.forConnectionProfile(params)
.forContract(contract);

await client.disconnect();

const params: RestApiClientConfig = {
orgMsp: "CuratorOrg",
userKey: "GC_ADMIN_CURATOR",
userSecret: "abc",
apiUrl: "http://localhost:3000/api",
configPath: path.resolve(__dirname, "api-config.json")

};

• 

• 

• 

• 

• 

const contract: ContractConfig = {
channelName: "product-channel",
chaincodeName: "basic-product",
contractName: "PublicKeyContract"

};

• 

• 

• 

5.1.3 Creating the client

- 17/34 - © 2023 Gala Games



5.2.3 Creating the client

The client creation is a two-step process. First, you need to create a client builder instance using the forConnectionProfile

method. Then the forContract  method returns the actual client instance.

As a result, you get a ChainClient  instance that can be used to interact with the chaincode. It supports evaluateTransaction  and 

submitTransaction  methods that are used to invoke chaincode functions.

After you end interacting with the chaincode, you should disconnect the client:

5.3 Builder and actual client

For all high-level operations, the client uses the Builder  pattern: 1. first, you create a builder instance using the 

forConnectionProfile  or forApiConfig  method; 2. then you configure the builder instance using the forContract  method.

Since all ChainClient  builders share the same interface, you can just parametrize the builder type and use the same code for all

client types, for instance:

5.4 Extending the client API

The @gala-chain/client  package provides a default API definition that is used to make the client type-safe. By default ChainClient

defines evaluateTransaction  and submitTransaction  methods that are used to interact with the chaincode. However, you can

provide your own API definition, if you want to extend the client API or use a different API. The API definition is a function that

accepts a ChainClient  instance and returns an object with methods that will be added to the client.

Now, when you enhance the client with your custom API, you can use not only default methods but also the ones that you

defined:

const client: ChainClient = gcclient
.forApiConfig(params)
.forContract(contract);

await client.disconnect();

const builder: ChainClientBuilder = process.env.USE_REST_API === "true"
? gcclient.forApiConfig(...)
: gcclient.forConnectionProfile(...);

const client: ChainClient = builder.forContract(...);

function customAPI(client: ChainClient) {
return {
async GetProfile(privateKey: string) {
const dto = new GetMyProfileDto().signed(privateKey, false);
const response = await client.evaluateTransaction("GetMyProfile", dto, UserProfile);
if (GalaChainResponse.isError(response)) {
throw new Error(`Cannot get profile: ${response.Message} (${response.ErrorKey})`);

} else {
return response.Data as UserProfile;

}
}

};
}

const client: ChainClient = ...;
client.evaluateTransaction(...); // available
client.submitTransaction(...); // available
client.GetProfile(...); // compilation error

const extendedClient = client.extend(customAPI);
client.evaluateTransaction(...); // available
client.submitTransaction(...); // available
client.GetProfile(...); // available

5.2.3 Creating the client

- 18/34 - © 2023 Gala Games



6. Testing your chaincode

The GalaChain SDK includes a comprehensive set of tools in the @gala-chain/test  package to facilitate the testing of your

chaincode. This package supports both unit testing for individual contracts and integration/end-to-end testing for running

networks.

6.1 Unit testing

The @gala-chain/test  package offers utilities designed for straightforward unit testing of your chaincode. The recommended

library for tests is Jest.

6.1.1 Writing unit tests

Consider a contract AppleContract  with the following methods:

Let's create tests for the following scenarios: 1. AppleContract  should allow to plant a tree. 2. AppleContract  should fail to plant a

tree if tree already exists. 3. AppleContract  should allow to pick an apple.

Note: AppleContract  with the referenced implementation and all relevant tests are available in chaincode template. You can

follow the instructions in Getting started to create a new chaincode project with AppleContract  included.

Test 1. AppleContract  should allow to plant a tree

This test ensures that the AppleContract  allows users to successfully plant a new apple tree. It validates the contract's behavior

during the tree planting process.

In this test, we set up the initial environment using the fixture  utility from @gala-chain/test . The fixture  contains: - contract  --

instance of the AppleContract  class, - ctx  -- test chaincode context, - writes  -- object capturing changes to the blockchain state.

Also, we define the AppleTreeDto  instance containing details about the apple tree to be planted, and the expectedTree  instance

containing the expected object to be written to the blockchain state.

The primary action involves invoking the PlantTree  method on the contract  instance.

Then, we assert that the response from planting the tree aligns with the expected success result with transactionSuccess

matcher from @gala-chain/test . Furthermore, we verify that the changes to the blockchain state ( writes ) match the expected

modifications. Since writes  is a map of key-value pairs, we use the writesMap  utility from @gala-chain/test  to get a key-value

representation of the expectedTree  instance.

export class AppleContract extends GalaContract {
public async PlantTree(ctx: GalaChainContext, dto: AppleTreeDto): Promise<void> { ... }
public async PickApple(ctx: GalaChainContext, dto: PickAppleDto): Promise<void> { ... }

}

import { fixture, transactionSuccess, writesMap } from "@gala-chain/test";
import { AppleTree, AppleTreeDto, Variety } from "../apples";
import { AppleContract } from "./AppleContract";

it("should allow to plant a tree", async () => {
// Given
const {contract, ctx, writes} = fixture(AppleContract);
const dto = new AppleTreeDto(Variety.GALA, 1);
const expectedTree = new AppleTree(ctx.callingUser, dto.variety, dto.index, ctx.txUnixTime);

// When
const response = await contract.PlantTree(ctx, dto);

// Then
expect(response).toEqual(transactionSuccess());
expect(writes).toEqual(writesMap(expectedTree));

});

6. Testing your chaincode

- 19/34 - © 2023 Gala Games

https://jestjs.io/


Test 2. AppleContract  should fail to plant a tree if tree already exists

In this test case, we aim to verify the behavior of the AppleContract when attempting to plant a new apple tree that already

exists. In our case a tree is considered to exist if it has the same variety  and index  as is planted by the same user.

In this test case, we also use the fixture  utility from @gala-chain/test  to set up the initial environment. However, we use the 

callingUser  method to specify the user who will invoke the contract method, and we use the savedState  method to specify the

initial state of the blockchain. Also, the saved AppleTree  instance is marked to be planted by the user who invokes the contract

method ( user.identityKey  is the same as ctx.callingUser  in this setup).

This way calling PlantTree  method with the same variety  and index  will result in an error.

During validation, we assert that the response from planting the tree contains the expected error message, and no changes to

the blockchain state ( writes ) are made. To assert the error we use the transactionErrorMessageContains  matcher from @gala-

chain/test . Other useful matchers include transactionError  (for providing an exact error object) and transactionErrorKey  (for

providing the error key).

Test 3. AppleContract  should allow to pick an apple

In this test case, we aim to verify the behavior of the AppleContract  when attempting to pick an apple from an existing apple tree.

In our case a tree has apples if a given time passes. That's why we start from a tree that was planted two years ago.

During validation, we assert that the response from picking an apple is successful, and the change to the blockchain state

( writes ) is overriding current apple tree with the updated picked apples count.

import { fixture, transactionErrorMessageContains } from "@gala-chain/test";
import { ChainUser } from "@gala-chain/client";
import { AppleTree, AppleTreeDto, Variety } from "../apples";
import { AppleContract } from "./AppleContract";

it("should fail to plant a tree if tree already exists", async () => {
// Given
const user = ChainUser.withRandomKeys();

const {contract, ctx, writes} = fixture(AppleContract)
.callingUser(user)
.savedState(new AppleTree(user.identityKey, Variety.GOLDEN_DELICIOUS, 1, 0));

// When
const response = await contract.PlantTree(ctx, new AppleTreeDto(Variety.GOLDEN_DELICIOUS, 1));

// Then
expect(response).toEqual(transactionErrorMessageContains("Tree already exists"));
expect(writes).toEqual({});

});

import { fixture, transactionSuccess, writesMap } from "@gala-chain/test";
import { plainToInstance } from "class-transformer";
import { AppleTree, PickAppleDto, Variety } from "../apples";
import { AppleContract } from "./AppleContract";

it("should allow to pick apples", async () => {
// Given
const twoYearsAgo = new Date(new Date().getTime() - 1000 * 60 * 60 * 24 * 365 * 2).getTime();
const existingTree = new AppleTree("client|some-user", Variety.GALA, 1, twoYearsAgo);
const {contract, ctx, writes} = fixture(AppleContract).savedState(existingTree);

const dto = new PickAppleDto(existingTree.plantedBy, existingTree.variety, existingTree.index);

// When
const response = await contract.PickApple(ctx, dto);

// Then
expect(response).toEqual(transactionSuccess());
expect(writes).toEqual(writesMap(plainToInstance(AppleTree, {
...existingTree,
applesPicked: existingTree.applesPicked.plus(1)

})));
});

6.1.1 Writing unit tests

- 20/34 - © 2023 Gala Games



6.1.2 Using fixture  for regular functions

fixture  can be used for regular functions as well, without the need to call contract methods directly. However, the ctx

parameter is tied to the contract, and you must provide any contract class, such as AppleContract  or any class that extends 

GalaContract  from the @gala-chain/chaincode  package.

Using fixture  for regular functions is useful when you want to test the behavior of the function without the need to call the

contract method. However, if you want to verify writes, you need to explicitly call contract.afterTransaction  or 

ctx.stub.flushWrites  method. This is required, because all writes actually are added to internal cache, and are executed after the

contract method is successfully executed.

6.1.3 Additional notes

Signatures

In most transactions, DTOs require a secp256k1 signature to verify the identity of the user invoking the contract method. When

using fixture , there's no need to provide a signature as it's handled automatically.

beforeTransaction  and afterTransaction

In the context of testing contract methods with fixture , you don't need to manually call contract.beforeTransaction  and 

contract.afterTransaction  methods; they are invoked automatically.

6.2 Integration testing

The @gala-chain/test  package, combined with the @gala-chain/client  package, provides utilities for integration testing your

chaincode. The primary objective of integration or end-to-end tests is to call transactions on the actual Hyperledger Fabric

network and verify the results.

The recommended library for tests is Jest.

import { ChainUser } from "@gala-chain/client";
import { fixture, writesMap } from "@gala-chain/test";
import { GalaContract } from "@gala-chain/chaincode";
import { AppleTreeDto, AppleTreesDto } from "./dtos";
import { Variety } from "./types";
import { AppleTree } from "./AppleTree";
import { plantTrees } from "./plantTrees";

class TestContract extends GalaContract {
constructor() {
super("TestContract", "0.0.1");

}
}

it("should allow to plant trees", async () => {
// Given
const user = ChainUser.withRandomKeys();

const {ctx, writes} = fixture(TestContract).callingUser(user);

const dto = new AppleTreesDto([
new AppleTreeDto(Variety.GALA, 1),
new AppleTreeDto(Variety.MCINTOSH, 2),

]);

const expectedTrees = dto.trees.map(t => new AppleTree(user.identityKey, t.variety, t.index, ctx.txUnixTime));

// When
const response = await plantTrees(ctx, dto);

// Then
expect(response).toEqual(expectedTrees);

await ctx.stub.flushWrites();
expect(writes).toEqual(writesMap(...expectedTrees));

});

6.1.2 Using fixture for regular functions

- 21/34 - © 2023 Gala Games

https://jestjs.io/


6.2.1 Writing integration tests

Assume you have a contract AppleContract  with the following methods:

Let's write tests for the following scenarios: 1. Plant a bunch of trees 2. Fetch GALA trees planted by a user 3. Fail to pick a

GOLDEN_DELICIOUS apple because tree is too young

Note: AppleContract  with the referenced implementation and all relevant tests (file: e2e/apples.spec.ts ) are available in

chaincode template.

Setup

Before writing integration tests, ensure you have a running GalaChain network. You can use the npm run network:start  command

provided by the chaincode template to start a local network in dev mode with hot-reload enabled.

Integration tests are executed against the running network, which is not recreated after each test. To make tests independent,

you may need to randomize test data or clean up the data on the chain after tests.

In our case for apples, we use random users defined at the test suite level to create different users for each run, ensuring test

suite independence. However, each test in the suite uses the same user and is not independent. Thus, we use scenario-like

testing in the apples test suite, and each test is dependent on the previous one.

Also, since we are using the running network, we need a client to interact with the network. It needs to be connected to the

network, anf it needs to be disconnected after the tests are finished.

Here is an example of the test setup:

Optional setup -- custom API

By default client  is not aware of your chaincode and types, providing only generic methods for submitting or evaluating

transactions:

They are generic, and you need to provide a method name, and optionally a DTO and response type to deserialize the response to

a proper type. But you can define a custom API, that will be aware of your chaincode and types.

export class AppleContract extends GalaContract {
public async PlantTrees(ctx: GalaChainContext, dto: AppleTreesDto): Promise<void> { ... }
public async FetchTrees(ctx: GalaChainContext, dto: FetchTreesDto): Promise<PagedTreesDto> { ... }
public async PickApple(ctx: GalaChainContext, dto: PickAppleDto): Promise<void> { ... }

}

import { AdminChainClients, TestClients, transactionErrorKey, transactionSuccess, } from "@gala-chain/test";
import { GalaChainResponse } from "@gala-chain/api";
import { ChainClient, ChainUser } from "@gala-chain/client";
import { AppleTreeDto, AppleTreesDto, FetchTreesDto, PagedTreesDto, PickAppleDto, Variety } from "../src/apples";

describe("Apple trees", () => {
const appleContractConfig = {apples: {name: "AppleContract", api: appleContractAPI}};
let client: AdminChainClients<typeof appleContractConfig>;
let user: ChainUser;

beforeAll(async () => {
client = await TestClients.createForAdmin(appleContractConfig);
user = await client.createRegisteredUser();

});

afterAll(async () => {
await client.disconnect();

});
...

submitTransaction(method: string): Promise<GalaChainResponse<unknown>>;
submitTransaction(method: string, dto: ChainCallDTO): Promise<GalaChainResponse<unknown>>;
submitTransaction<T>(method: string, resp: ClassType<Inferred<T>>): Promise<GalaChainResponse<T>>;
submitTransaction<T>(method: string, dto: ChainCallDTO, resp: ClassType<Inferred<T>>): Promise<GalaChainResponse<T>>;

evaluateTransaction(method: string): Promise<GalaChainResponse<unknown>>;
evaluateTransaction(method: string, dto: ChainCallDTO): Promise<GalaChainResponse<unknown>>;
evaluateTransaction<T>(method: string, resp: ClassType<Inferred<T>>): Promise<GalaChainResponse<T>>;
evaluateTransaction<T>(method: string, dto: ChainCallDTO, resp: ClassType<Inferred<T>>): Promise<GalaChainResponse<T>>;

6.2.1 Writing integration tests

- 22/34 - © 2023 Gala Games



If you choose not to use a custom API, you can create a test client as follows:

This way you will be able to use only the generic methods to call chaincodes: client.apples.evaluateTransaction(...)  or 

client.apples.submitTransaction(...) .

However, defining a custom API offers type-safe calls, as demonstrated in the apples test suite. You can define it as follows:

And provide it for client creation:

And it allows you to use type-safe calls, defined in the API, like client.apples.PlantTrees(...)  or client.apples.FetchTrees(...) .

Test 1. Plant a bunch of trees

In this test case, we create a DTO with three trees to plant. We sign the DTO with the user's private key to prove the identity of

the user. This is required, in contrast to unit tests.

Then we call PlantTrees  method, defined in our custom API, and we assert that the response is successful.

As a result the test writes three trees to the blockchain, planted by the user. We will use them in the next test.

Test 2. Fetch GALA trees planted by a user

const appleContractConfig = {apples: "AppleContract"};
let client: AdminChainClients<typeof appleContractConfig>;
...
beforeAll(async () => {
client = await TestClients.createForAdmin(appleContractConfig);
...

interface AppleContractAPI {
PlantTrees(dto: AppleTreesDto): Promise<GalaChainResponse<void>>;
FetchTrees(dto: FetchTreesDto): Promise<GalaChainResponse<PagedTreesDto>>;

}

function appleContractAPI(client: ChainClient): AppleContractAPI {
return {
PlantTrees(dto: AppleTreesDto) {
return client.submitTransaction("PlantTrees", dto) as Promise<GalaChainResponse<void>>;

},
FetchTrees(dto: FetchTreesDto) {
return client.evaluateTransaction("FetchTrees", dto, PagedTreesDto);

}
};

}

const appleContractConfig = {apples: {name: "AppleContract", api: appleContractAPI}};
let client: AdminChainClients<typeof appleContractConfig>;
...
beforeAll(async () => {
client = await TestClients.createForAdmin(appleContractConfig);
...

test("Plant a bunch of trees", async () => {
// Given
const dto = new AppleTreesDto([
new AppleTreeDto(Variety.GALA, 1),
new AppleTreeDto(Variety.GOLDEN_DELICIOUS, 2),
new AppleTreeDto(Variety.GALA, 3),

])
.signed(user.privateKey, false);

// When
const response = await client.apples.PlantTrees(dto);

// Then
expect(response).toEqual(transactionSuccess());

});

test("Fetch GALA trees planted by a user", async () => {
// Given
const dto = new FetchTreesDto(user.identityKey, Variety.GALA)
.signed(user.privateKey, false);

// When
const response = await client.apples.FetchTrees(dto);

// Then
expect(response).toEqual(transactionSuccess({

6.2.1 Writing integration tests

- 23/34 - © 2023 Gala Games



In the previous test, we planted three trees, two of them are GALA. In this test, we fetch all GALA trees planted by the user.

The response contains two trees, planted by the user, and the bookmark for fetching next page (though in this case, it's empty).

Test 3. Fail to pick a GOLDEN_DELICIOUS apple because tree is too young

In this test case, we try to pick an apple from the tree that was planted in the first test. However, the tree is too young, so we

expect an error.

These examples provide a comprehensive guide for unit and integration testing of GalaChain smart contracts using the @gala-

chain/test  package. Adjust and expand the provided code snippets based on your specific contract implementations and testing

requirements.

trees: [
expect.objectContaining({plantedBy: user.identityKey, variety: Variety.GALA, index: 1}),
expect.objectContaining({plantedBy: user.identityKey, variety: Variety.GALA, index: 3})

],
bookmark: ""

}))
})

test("Fail to pick a GOLDEN_DELICIOUS apple because tree is too young", async () => {
// Given
const dto = new PickAppleDto(user.identityKey, Variety.GOLDEN_DELICIOUS, 2)
.signed(user.privateKey, false);

// When
const response = await client.apples.PickApple(dto);

// Then
expect(response).toEqual(transactionErrorKey("NO_APPLES_LEFT"));

});

6.2.1 Writing integration tests

- 24/34 - © 2023 Gala Games



7. Chaincode deployment

NOTE: Features described on this page are not yet available in GalaChain CLI. This page describes the future functionality and

is subject to change.

Chaincode is published as a Docker image to GalaChain repository. Once the image is published, it can be deployed to GalaChain

testnet or mainnet. In order to publish and deploy chaincode, you need to contact GalaChain support and add provide your

secp256k1 public key.

7.1 The process

Provide to GalaChain support chaincode information and public keys, then connect the chaincode with: 

Build and publish chaincode Docker image.

Deploy the chaincode to testnet or mainnet: 

Fetch information about the chaincode and deployments: 

7.2 Reference

GalaChain CLI calls some local command and accesses ServicePortal REST API to accomplish certain tasks. Each REST request

body to ServicePortal (1) is signed using our default GalaChain signature type (secp256k1, non-DER), and (2) contains unique

request id. Both signing and creating the ID is managed by GalaChain CLI.

7.2.1 Connecting the chaincode

Once you have generated secp256k1 key pair, you should send the following data to GalaChain support:

Org name

Channel name

Chaincode name

List of secp256k1 public keys that are allowed to deploy a chaincode to testnet

List of secp256k1 public keys that are allowed to deploy a chaincode to mainnet

This is an off-line process. Once you send the data, GalaChain support will ask you about some details, to ensure the data is not

corrupted.

Tip: you can use galachain keygen <path>  command to create a valid key pair.

Then you need to call in the chaincode directory:

This way GalaChain CLI will verify your public key is authorized to deploy chaincodes, and it will create a configuration file in

root project directory ( .galachainrc ) containing org, channel and chaincode names. This file should be added to your version

control system. Also most of galachain  commands that manage the chaincode require this file to get information about chaincode

metadata.

1. 

galachain connect

2. 

3. 

galachain [test-]deploy <image-tag>

4. 

galachain info

• 

• 

• 

• 

• 

galachain connect <org-name> <channel-name> <chaincode-name>

7. Chaincode deployment

- 25/34 - © 2023 Gala Games



7.2.2 Fetching information about chaincode and deployments

This command will display:

Org, channel, chaincode names (from .galachainrc  file)

Tags available for deployment (from .galachainrc  file)

Information about deployment to testnet (if applicable)

Information about deployment to mainnet (if applicable)

galachain info

• 

• 

• 

• 

7.2.2 Fetching information about chaincode and deployments

- 26/34 - © 2023 Gala Games



7.2.3 Deploying the chaincode

Deploying to GalaChain testnet:

Deploying to GalaChain mainnet:

This command schedules deployment of published chaincode Docker image to GalaChain testnet or mainnet. In order to get the

information about the current status of deployments, you need to use galachain info  command.

galachain test-deploy <image-tag>

galachain deploy <image-tag>

7.2.3 Deploying the chaincode

- 27/34 - © 2023 Gala Games



8. Chaincode Post Deployment

Assuming a brand new channel is deployed after following the steps in chaincode-deployment.md.

8.1 How to create keys

Use the chain-cli command to generate a secp256k1 key pair (or alternatively, use a Node.js library such as @noble/secp256k1  or 

ethers ).

Using the command above both public and private key will be generated in the provided path. The public key will have the suffix

.pub .

Details on how to install the chain-cli can be found in getting-started.md.

8.2 How to generate a new encryption key

Choose one of the options below.

Generate a strong password using a password vault (e.g. Bitwarden, LastPass, KeepassXC).

Hash the generated private key.

The encryption key is used as the x-user-encryption-key  header, and is an important part of GalaChain authorization flow.

Security best practices dictate that it should be a strong key.

8.3 How to create a new curator user

Use GC_ADMIN to create at least one new account (e.g. GAME_ADMIN) in the curator org.

8.4 How to save the generated public key for the new curator user

Substitute the placeholder values in the sample curl command below with the generated curator user id, encryption key and

public key to make a successful request.

The signature  should be generated using the private key of the GC_ADMIN  in this case because the signer has to already

be registered. See how to sign a DTO here.

Note that the user  requires a prefix of service|  for curator users.

galachain keygen file_name

1. 

2. 

curl --location 'http://{CHAINCODE_URL}/api/identity/curator-user' \
--header 'accept: application/json' \
--header 'Content-Type: application/json' \
--header 'x-identity-user-id: GC_ADMIN' \
--header 'x-user-encryption-key: GC_ADMIN' \
--data '{
  "userId": "GAME_ADMIN",
  "identityEncryptionKey": "strong-generated-key"
}'

curl --location 'http://{CHAINCODE_URL}/api/{CHAINCODE_NAME}/public-key-contract/RegisterUser' \
--header 'accept: application/json' \
--header 'Content-Type: application/json' \
--header 'x-identity-lookup-key: GC_ADMIN' \
--header 'x-user-encryption-key: GC_ADMIN' \
--data '{
    "publicKey": "0454d15528f41819cb77816ddd7f76f753de0ae425680d1055c043d18be0eebf369e122e3b44e1c0184619754ffa23c2d3f1945cee8e7b46f95b401b1fe69baefb",
    "signature": "MEYCIQDf3m2pVAcm2CBmev3070TPu+FQZhMlqRGzVCGkUGvOlwIhALFlzbamcGArO4AeALTmAKqGPxklnobLMwFX+VoiDbOB",
    "user": "service|GAME_ADMIN"
}'

8. Chaincode Post Deployment

- 28/34 - © 2023 Gala Games



8.5 How to add the new curator user as an authority on a token

Note that while the signature field is optional for the DTO class definition generally, it is required for this Write/Submit

transaction to be executed on chain.

It is strongly recommended to save at least two users as authorities on every token class. Only token authorities have

the ability to update existing TokenClass objects on chain, so create at least two to have a backup in case of private

key loss.

8.6 How to sign a DTO

It's necessary to have a private key generated by galachain keygen  to use this command. Leave the signature field in the provided

DTO empty - the convenience of this command is that it will sign the DTO, generate the signature, and populate the field for you. 

Then you can use the command galachain dto:sign  to get the response with your DTO containing the signature field.

Example:

or

The command will normalize your private key and create a signature based on the DTO and the normilized private key using the 

secp256k1  cryptography. The signature is encoded to base64 and added to the signature field.

Note that if you like to sign DTOs on your on, it's important to know the DTO should be deterministic, so different peers will

always interpret them the same. The reason and the solution for that can be found here.

curl --location 'http://{CHAINCODE_URL}/api/{CHAINCODE_NAME}/token-contract/CreateTokenClass' \
--header 'accept: application/json' \
--header 'Content-Type: application/json' \
--header 'x-identity-lookup-key: service|GAME_ADMIN' \
--header 'x-user-encryption-key: strong-generated-key' \
--data '{
    "tokenClass": {
        "collection": "ChainCli2",
        "category": "Sample2",
        "type": "ffxc7xyh2",
        "additionalKey": "v9dbrgop2"
    },
    "name": "ChainCliSampleToken1234",
    "symbol": "CHCHCHAINSS",
    "description": "Mostly-randomly generated sample DTO created with chain dto generate.",
    "image": "http://app.gala.games/chain-cli-test-data",
    "metadataAddress": "qui",
    "totalBurned": "0",
    "maxCapacity": "100000000",
    "contractAddress": "deserunt incididunt",
    "totalSupply": "0",
    "maxSupply": "1000000000",
    "isNonFungible": false,
    "rarity": "IWiSx",
    "authorities": [
        "client|GAME_ADMIN",
        "client|GC_ADMIN"
    ],
    "totalMintAllowance": "0",
    "network": "GC",
    "decimals": 1,
    "signature": "MEQCIFyNwLSoFTdPjjlvt9m9M/1v9lele696/SP9GLbrcPOzAiBe3K+6iOwYlOOhNb+pAfnolY6o12gT+4QRSfOqDnoI4Q=="
}'

galachain dto:sign data/privateKey '{
  "tokenClass": {
    "collection": "CLITest",
    "category": "Currency",
  }
}'

galachain dto:sign data/privateKey dto.json

8.5 How to add the new curator user as an authority on a token

- 29/34 - © 2023 Gala Games

https://hyperledger-fabric.readthedocs.io/en/release-2.4/chaincode4ade.html#technical-problem


9. Hackathon

9.1 Deploy

9.1.1 Experimental! Deploy your chaincode

For the first time we're able to provide you with the ability to deploy chaincode and make it public. This is an experimental

feature, there might be some glitches, and at some point all the data will be probably removed.

How to deploy:

Build and publish your chaincode as a docker image in public repo (for instance DockerHub, GitHub registry or GitLab registry).

Remember to docker login  before pushing.

Sample for GitLab:

Provide us the image name (everything before the :  character of full docker tag). In the sample above it is the content of 

IMG_TAG  var without :0.0.1  part.

Provide us your secp public key for chaincode admin, and secp public keys for all developers. You can generate sone with the

command:

The above command creates a private keys in ./gc-admin-key  and ./gc-dev1-key , and public keys in ./gc-key.pub , ./gc-dev-

key.pub . We need the content of *.pub  files for chaincode admin user and for all developers who want to deploy. Keep private

keys safe, they will be needed later.

Once we register your public keys, you will be able to connect your chaincode with GalaChain. To do it, navigate to the root

directory of your chaincode and call the following command, providing path to developer private key:

You should see the message that confirms you are connected:

If your docker image is published, and your chaincode is connected, you can deploy it to our sandbox environment with the

command:

Note: you need to provide docker image name and also the version part.

You can check the status of your deployment with the command:

Once the status is CC_DEPLOYED  you can visit the Swagger webpage: https://gateway.stage.galachain.com/docs/. You can find your

chaincode ( gc-<eth-addr> ). If the version is still unknown (and you see v?.?.? ), it means you may need to wait a couple of

minutes till the chaincode is ready.

Once it is ready, you can use the webpage to call chaincodes. It's good to start PublicKeyContract/GetPublicKey  with empty object

as request body. It should return the admin public key you provided before.

1. 

IMG_TAG=registry.gitlab.com/<your-username>/my-gc-chaincode:0.0.1
docker buildx build . -t "$IMG_TAG" -o type=image --platform=linux/amd64
docker push "$IMG_TAG"

1. 

galachain keygen gc-admin-key
galachain keygen gc-dev-key

1. 

galachain connect <path-to>/gc-dev-key

You are now connected! Chaincode gc-<eth-addr-from-admin-pub-key>

1. 

galachain deploy <docker-image-tag> <path-to>/gc-dev-key

1. 

galachain info <path-to>/gc-dev-key

9. Hackathon

- 30/34 - © 2023 Gala Games



9.1.2 GC support internal notes

To register a user, go to https://gitlab.com/gala-games/chain/platform/infrastructure-api/-/pipelines/new and provide:

Run for branch name or tag: register-user

Variable key: CHAINCODE_IMAGE_NAME  and value: provided image name from the participant (should not contain : )

Variable key: CHAINCODE_ADMIN_PUBLIC_KEY  and value: provided key from the participant

Variable key: CHAINCODE_DEV_PUBLIC_KEYS  and value: provided keys from participant, separated by a single space

Then run the pipeline and wait till it ends. If the output contains error response, it probably means, something was wrong with

the input.

• 

• 

• 

• 

9.1.2 GC support internal notes

- 31/34 - © 2023 Gala Games



9.2 Hackathon

As this is our second GalaChain hackathon, there might be some rough edges and chaos, but hey, that's what makes a good

hackathon. 

9.3 Schedule

The Hackathon will be 48 Hours held on February 12-14th, 2024

9.4 Rules

There aren't many, but the standard rules we use in our Discord and in our EULAs apply. It's pretty simple: No warranties on the

software of any kind (this software is still in development) and be kind. We reserve the right to kick anyone out, but just be nice

to your fellow developers and we should all get along. 

We have have 2 engineers judging: Jakub Dzikowski and Jeff Eganhouse. But! Rest assured the whole GalaChain team will be

putting thier two cents in. 

9.5 Prizes

We'll be awarding everyone an Epic participation NFT. If your team wins, your entire team will get a Legendary NFT in addition

to the participation NFT. Let the bragging rights begin!

9.6 Atmosphere

We will be conducting this hackathon in our GalaChain Discord.

Each team will have their own private room with voice, text and screen sharing capabilities.

Don't have a team? Don't panic. Meet us in Discord using the above link. We will help find you a great team.

If you need engineering support, head to the discord link above and let the engineers on duty know you need assistance. Then,

someone will pop into your private room to help out.

9.7 Getting Started

First, pull down the Public SDK onto your machine. 

Time (CST) Activity

10:00 AM Start!

10:00-11:00 Meet in the GalaChain Discord

11:00-10:00 (next 48 hours) Hack!

10:00 AM Hackathon presentations on Discord Stage, or send us a 10 min recording to

highlight your hack-o-licious project!

After presentations/recordings have

been viewed.

Winners will be announced in GalaChain Announcements via Discord.

1. 

2. 

3. 

4. 

9.2 Hackathon

- 32/34 - © 2023 Gala Games

https://discord.gg/t3gg9XMj44
https://github.com/GalaChain/sdk


Next, here's a helpful flow to get you developing:

Read the Getting started guide. If you get stuck contact a Gala engineer in the GalaChain General Discord chat.

Use the CLI to init a project from template and start a local environment

Use the samples in e2e tests and our reference docs for token operations to design the app flow

Use unit tests or any code/scripts to interact with the chain

Rinse, repeat until you're happy with your hack.

Deploy your code to the GalaChain sandbox.

1. 

2. 

3. 

4. 

5. 

6. 

9.7 Getting Started

- 33/34 - © 2023 Gala Games



9.7.1 Hackathon Ideas

Are you stuck on what to code up? Here's some ideas to get you started:

Decentralized Marketplace for NFTs:

Create a marketplace where users can list, buy, and sell NFTs. 

Implement features like bidding, auctions, and royalty mechanisms for artists.

Enable users to create and manage their own NFT collections. 

P2P loan platform:

Build a lending platform where users can request and offer loans using tokens as collateral.

Implement features like interest rates, loan durations, and automated repayment mechanisms.

Fractional ownership of NFTs:

Allow users to purchase fractions of high-value NFTs, enabling broader access to expensive assets.

Implement mechanisms for managing fractional ownership, including voting, revenue sharing, and buyout options.

Staking and yield farming:

Create a staking platform where users can lock up tokens to earn rewards over time.

Integrate yield farming mechanisms to incentivize liquidity provision and participation in the ecosystem.

Cross-channel swaps:

Develop a mechanism that allows users to swap tokens between different channels.

In the hackathon we will use just one channel, but we can design the flow to behave like it were two channels networks (esp.

design the process in a way to avoid corrupted state, support rollbacks etc.) .

NFT-backed governance and voting:

Build a governance platform where NFT holders can vote on proposals related to the ecosystem.

Implement mechanisms to weight votes based on NFT rarity or ownership duration.

NFT-backed loans:

Create a system where users can use their NFTs as collateral to borrow tokens. 

Implement mechanisms for assessing NFT value, liquidation in case of default, and repayment terms.

NFT-backed insurance:

Create a system where users can insure their valuable NFTs against theft, loss, or damage.

Implement mechanisms for assessing risk, determining premiums, and processing claims.

GalaChain attack:

Find flaws and/or security issues with our current operations on chain, like auth, token operations, allowances, mints, transfers

GalaChain race:

Push GalaChain speed limits by attempting to max out TPS with data that is realistic (might not be good if everyone is on one

channel tho)

Get an Open Source game and enhance it with NFT

Find an FPS game in github and make it use an NFT gun or armor

That's it. Have Fun and Happy Hacking!

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

9.7.1 Hackathon Ideas

- 34/34 - © 2023 Gala Games


	GalaChain SDK Docs
	1. GalaChain SDK
	1.1 Features
	1.2 Working with GalaChain
	1.3 Deploying chaincode to GalaChain
	1.4 Galachain post deployment
	1.5 Reference documentation
	1.6 Documentation in PDF format

	2. GalaChain
	2.1 What is GalaChain?
	2.2 Why is GalaChain?
	2.3 What kind of technology is GalaChain?
	2.4 When is GalaChain?
	2.5 Where do nodes come in?
	2.6 How fast is GalaChain?
	2.7 GalaChain for Publishers
	2.8 GalaChain for Developers

	3. Getting started
	3.1 Local Environment (Linux, MacOS, or Windows with WSL)
	3.1.1 Requirements
	3.1.2 1. Install our CLI
	3.1.3 2. Initialize your project
	3.1.4 3. Start the network
	3.1.5 4. Run integration tests
	3.1.6 5. Verify changes in block browser and GraphQL
	3.1.7 6. Next steps

	3.2 Using Dev Containers (Linux or MacOS)
	3.2.1 Requirements
	3.2.2 1. Install our CLI
	3.2.3 2. Initialize your project
	3.2.4 3. Open in a Dev Container
	3.2.5 4. Install dependencies and start network
	3.2.6 5. Run integration tests
	3.2.7 6. Verify changes in block browser and GraphQL

	3.3 Use Docker file + Dev Containers (Linux, MacOS or Windows)
	3.3.1 Requirements
	3.3.2 1. Install our CLI
	3.3.3 2. Initialize your project
	3.3.4 3. Docker file and Instructions


	4. Chaincode development
	4.1 Contract classes
	4.2 Transaction decorators
	4.3 Transaction context
	4.4 Authentication and authorization
	4.4.1 Additional notes about signatures
	4.4.2 Restricting access by organization name

	4.5 DTO types
	4.6 Objects saved on chain
	4.6.1 Ranged objects

	4.7 Error handling
	4.8 State cache
	4.9 Prevent duplicate calls

	5. Chaincode Client
	5.1 Hyperledger Fabric Client
	5.1.1 HFClientConfig
	5.1.2 ContractConfig
	5.1.3 Creating the client

	5.2 REST API Client
	5.2.1 RestApiClientConfig
	5.2.2 ContractConfig
	5.2.3 Creating the client

	5.3 Builder and actual client
	5.4 Extending the client API

	6. Testing your chaincode
	6.1 Unit testing
	6.1.1 Writing unit tests
	Test 1. AppleContract should allow to plant a tree
	Test 2. AppleContract should fail to plant a tree if tree already exists
	Test 3. AppleContract should allow to pick an apple

	6.1.2 Using fixture for regular functions
	6.1.3 Additional notes
	Signatures
	beforeTransaction and afterTransaction


	6.2 Integration testing
	6.2.1 Writing integration tests
	Setup
	Optional setup -- custom API
	Test 1. Plant a bunch of trees
	Test 2. Fetch GALA trees planted by a user
	Test 3. Fail to pick a GOLDEN_DELICIOUS apple because tree is too young



	7. Chaincode deployment
	7.1 The process
	7.2 Reference
	7.2.1 Connecting the chaincode
	7.2.2 Fetching information about chaincode and deployments
	7.2.3 Deploying the chaincode


	8. Chaincode Post Deployment
	8.1 How to create keys
	8.2 How to generate a new encryption key
	8.3 How to create a new curator user
	8.4 How to save the generated public key for the new curator user
	8.5 How to add the new curator user as an authority on a token
	8.6 How to sign a DTO

	9. Hackathon
	9.1 Deploy
	9.1.1 Experimental! Deploy your chaincode
	9.1.2 GC support internal notes

	9.2 Hackathon
	9.3 Schedule
	9.4 Rules
	9.5 Prizes
	9.6 Atmosphere
	9.7 Getting Started
	9.7.1 Hackathon Ideas



